Weipeng Zhang


2021

Semantic parsing is challenging due to the structure gap and the semantic gap between utterances and logical forms. In this paper, we propose an unsupervised semantic parsing method - Synchronous Semantic Decoding (SSD), which can simultaneously resolve the semantic gap and the structure gap by jointly leveraging paraphrasing and grammar-constrained decoding. Specifically, we reformulate semantic parsing as a constrained paraphrasing problem: given an utterance, our model synchronously generates its canonical utterancel and meaning representation. During synchronously decoding: the utterance paraphrasing is constrained by the structure of the logical form, therefore the canonical utterance can be paraphrased controlledly; the semantic decoding is guided by the semantics of the canonical utterance, therefore its logical form can be generated unsupervisedly. Experimental results show that SSD is a promising approach and can achieve state-of-the-art unsupervised semantic parsing performance on multiple datasets.