Tobias Schimanski


2025

Retrieval Augmented Generation (RAG) is widely employed to ground responses to queries on domain-specific documents. But do RAG implementations leave out important information when answering queries that need an integrated analysis of information (e.g., Tell me good news in the stock market today.)? To address these concerns, RAG developers need to annotate information retrieval (IR) data for their domain of interest, which is challenging because (1) domain-specific queries usually need nuanced definitions of relevance beyond shallow semantic relevance; and (2) human or GPT-4 annotation is costly and cannot cover all (query, document) pairs (i.e., annotation selection bias), thus harming the effectiveness in evaluating IR recall. To address these challenges, we propose DIRAS (**D**omain-specific **I**nformation **R**etrieval **A**nnotation with **S**calability), a manual-annotation-free schema that fine-tunes open-sourced LLMs to consider nuanced relevance definition and annotate (partial) relevance labels with calibrated relevance scores. Extensive evaluation shows that DIRAS enables smaller (8B) LLMs to achieve GPT-4-level performance on annotating and ranking unseen (query, document) pairs, and is helpful for real-world RAG development.

2024

Advances towards more faithful and traceable answers of Large Language Models (LLMs) are crucial for various research and practical endeavors. One avenue in reaching this goal is basing the answers on reliable sources. However, this Evidence-Based QA has proven to work insufficiently with LLMs in terms of citing the correct sources (source quality) and truthfully representing the information within sources (answer attributability). In this work, we systematically investigate how to robustly fine-tune LLMs for better source quality and answer attributability. Specifically, we introduce a data generation pipeline with automated data quality filters, which can synthesize diversified high-quality training and testing data at scale. We further introduce four test sets to benchmark the robustness of fine-tuned specialist models. Extensive evaluation shows that fine-tuning on synthetic data improves performance on both in- and out-of-distribution. Furthermore, we show that data quality, which can be drastically improved by proposed quality filters, matters more than quantity in improving Evidence-Based QA.
To handle the vast amounts of qualitative data produced in corporate climate communication, stakeholders increasingly rely on Retrieval Augmented Generation (RAG) systems. However, a significant gap remains in evaluating domain-specific information retrieval – the basis for answer generation. To address this challenge, this work simulates the typical tasks of a sustainability analyst by examining 30 sustainability reports with 16 detailed climate-related questions. As a result, we obtain a dataset with over 8.5K unique question-source-answer pairs labeled by different levels of relevance. Furthermore, we develop a use case with the dataset to investigate the integration of expert knowledge into information retrieval with embeddings. Although we show that incorporating expert knowledge works, we also outline the critical limitations of embeddings in knowledge-intensive downstream domains like climate change communication.

2023

Public and private actors struggle to assess the vast amounts of information about sustainability commitments made by various institutions. To address this problem, we create a novel tool for automatically detecting corporate and national net zero and reduction targets in three steps. First, we introduce an expert-annotated data set with 3.5K text samples. Second, we train and release ClimateBERT-NetZero, a natural language classifier to detect whether a text contains a net zero or reduction target. Third, we showcase its analysis potential with two use cases: We first demonstrate how ClimateBERT-NetZero can be combined with conventional question-answering (Q&A) models to analyze the ambitions displayed in net zero and reduction targets. Furthermore, we employ the ClimateBERT-NetZero model on quarterly earning call transcripts and outline how communication patterns evolve over time. Our experiments demonstrate promising pathways for extracting and analyzing net zero and emission reduction targets at scale.
In the face of climate change, are companies really taking substantial steps toward more sustainable operations? A comprehensive answer lies in the dense, information-rich landscape of corporate sustainability reports. However, the sheer volume and complexity of these reports make human analysis very costly. Therefore, only a few entities worldwide have the resources to analyze these reports at scale, which leads to a lack of transparency in sustainability reporting. Empowering stakeholders with LLM-based automatic analysis tools can be a promising way to democratize sustainability report analysis. However, developing such tools is challenging due to (1) the hallucination of LLMs and (2) the inefficiency of bringing domain experts into the AI development loop. In this paper, we introduce ChatReport, a novel LLM-based system to automate the analysis of corporate sustainability reports, addressing existing challenges by (1) making the answers traceable to reduce the harm of hallucination and (2) actively involving domain experts in the development loop. We make our methodology, annotated datasets, and generated analyses of 1015 reports publicly available. Video Introduction: https://www.youtube.com/watch?v=Q5AzaKzPE4M Github: https://github.com/EdisonNi-hku/chatreport Live web app: reports.chatclimate.ai