Tobias Hecking


2024

This research explores strategies for steering the output of large language models (LLMs) towards specific styles, such as sentiment, emotion, or writing style, by adding style vectors to the activations of hidden layers during text generation. We show that style vectors can be simply computed from recorded layer activations for input texts in a specific style in contrast to more complex training-based approaches. Through a series of experiments, we demonstrate the effectiveness of activation engineering using such style vectors to influence the style of generated text in a nuanced and parameterisable way, distinguishing it from prompt engineering. The presented research constitutes a significant step towards developing more adaptive and effective AI-empowered interactive systems.

2023

Graphs are a natural representation of complex data as their structure allows users to discover (often implicit) relations among the nodes intuitively. Applications build graphs in an ad-hoc fashion, usually tailored to specific use cases, limiting their reusability. To account for this, we present the Corpus Annotation Graph (CAG) architectural framework based on a create-and-annotate pattern that enables users to build uniformly structured graphs from diverse data sources and extend them with automatically extracted annotations (e.g., named entities, topics). The resulting graphs can be used for further analyses across multiple downstream tasks (e.g., node classification). Code and resources are publicly available on GitHub, and downloadable via PyPi with the command pip install cag.