Tim Paek


2025

As the adoption of language models advances, so does the need to better represent individual users to the model. Are there aspects of an individual’s belief system that a language model can utilize for improved alignment? Following prior research, we investigate this question in the domain of opinion prediction by developing PrimeX, a dataset of public opinion survey data from 858 US residents with two additional sources of belief information: written explanations from the respondents for why they hold specific opinions, and the Primal World Belief survey for assessing respondent worldview. We provide an extensive initial analysis of our data and show the value of belief explanations and worldview for personalizing language models. Our results demonstrate how the additional belief information in PrimeX can benefit both the NLP and psychological research communities, opening up avenues for further study.
Language models prompted with a user description or persona have been used to predict the user’s preferences and opinions. However, existing approaches to building personas mostly rely on a user’s demographic attributes and/or prior judgments, but not on any underlying reasoning behind a user’s judgments. We introduce PB&J (Psychology of Behavior and Judgments), a framework that improves LM personas by incorporating potential rationales for why the user could have made a certain judgment. Our rationales are generated by a language model to explicitly reason about a user’s behavior on the basis of their experiences, personality traits, or beliefs. Our method employs psychological scaffolds: structured frameworks such as the Big 5 Personality Traits or Primal World Beliefs to help ground the generated rationales in existing theories. Experiments on public opinion and movie preference prediction tasks demonstrate that language model personas augmented with PB&J rationales consistently outperform personas conditioned only on user demographics and / or judgments, including those that use a model’s default chain-of-thought, which is not grounded in psychological theories. Additionally, our PB&J personas perform competitively with those using human-written rationales, suggesting the potential value of synthetic rationales guided by existing theories.

2018

2010

2008

2007

2005

2004

2001