Thomas C. Chuang


2005

2004

Named entities make up a bulk of documents. Extracting named entities is crucial to various applications of natural language processing. Although efforts to identify named entities within monolingual documents are numerous, extracting bilingual named entities has not been investigated extensively owing to the complexity of the task. In this paper, we describe a statistical phrase translation model and a statistical transliteration model. Under the proposed models, a new method is proposed to align bilingual named entities in parallel corpora. Experimental results indicate that a satisfactory precision rate can be achieved. To enhance the performance, we also describe how to improve the proposed method by incorporating approximate matching and person name recognition. Experimental results show that performance is significantly improved with the enhancement.

2003

2002

We present a new approach to the problem of aligning English and Chinese sentences in a bilingual corpus based on adaptive learning. While using length information alone produces surprisingly good results for aligning bilingual French and English sentences with success rates well over 95%, it does not fair as well for the alignment of English and Chinese sentences. The crux of the problem lies in greater variability of lengths and match types of the matched sentences. We propose to cope with such variability via a two-pass scheme under which model parameters can be learned from the data at hand. Experiments show that under the approach bilingual English-Chinese texts can be aligned effectively across diverse domains, genres and translation directions with accuracy rates approaching 99%.