Steve Young

Also published as: Steven Young


2019

2018

Statistical spoken dialogue systems usually rely on a single- or multi-domain dialogue model that is restricted in its capabilities of modelling complex dialogue structures, e.g., relations. In this work, we propose a novel dialogue model that is centred around entities and is able to model relations as well as multiple entities of the same type. We demonstrate in a prototype implementation benefits of relation modelling on the dialogue level and show that a trained policy using these relations outperforms the multi-domain baseline. Furthermore, we show that by modelling the relations on the dialogue level, the system is capable of processing relations present in the user input and even learns to address them in the system response.
Identifying and extracting data elements such as study descriptors in publication full texts is a critical yet manual and labor-intensive step required in a number of tasks. In this paper we address the question of identifying data elements in an unsupervised manner. Specifically, provided a set of criteria describing specific study parameters, such as species, route of administration, and dosing regimen, we develop an unsupervised approach to identify text segments (sentences) relevant to the criteria. A binary classifier trained to identify publications that met the criteria performs better when trained on the candidate sentences than when trained on sentences randomly picked from the text, supporting the intuition that our method is able to accurately identify study descriptors.

2017

Teaching machines to accomplish tasks by conversing naturally with humans is challenging. Currently, developing task-oriented dialogue systems requires creating multiple components and typically this involves either a large amount of handcrafting, or acquiring costly labelled datasets to solve a statistical learning problem for each component. In this work we introduce a neural network-based text-in, text-out end-to-end trainable goal-oriented dialogue system along with a new way of collecting dialogue data based on a novel pipe-lined Wizard-of-Oz framework. This approach allows us to develop dialogue systems easily and without making too many assumptions about the task at hand. The results show that the model can converse with human subjects naturally whilst helping them to accomplish tasks in a restaurant search domain.
Morphologically rich languages accentuate two properties of distributional vector space models: 1) the difficulty of inducing accurate representations for low-frequency word forms; and 2) insensitivity to distinct lexical relations that have similar distributional signatures. These effects are detrimental for language understanding systems, which may infer that ‘inexpensive’ is a rephrasing for ‘expensive’ or may not associate ‘acquire’ with ‘acquires’. In this work, we propose a novel morph-fitting procedure which moves past the use of curated semantic lexicons for improving distributional vector spaces. Instead, our method injects morphological constraints generated using simple language-specific rules, pulling inflectional forms of the same word close together and pushing derivational antonyms far apart. In intrinsic evaluation over four languages, we show that our approach: 1) improves low-frequency word estimates; and 2) boosts the semantic quality of the entire word vector collection. Finally, we show that morph-fitted vectors yield large gains in the downstream task of dialogue state tracking, highlighting the importance of morphology for tackling long-tail phenomena in language understanding tasks.
One of the core components of modern spoken dialogue systems is the belief tracker, which estimates the user’s goal at every step of the dialogue. However, most current approaches have difficulty scaling to larger, more complex dialogue domains. This is due to their dependency on either: a) Spoken Language Understanding models that require large amounts of annotated training data; or b) hand-crafted lexicons for capturing some of the linguistic variation in users’ language. We propose a novel Neural Belief Tracking (NBT) framework which overcomes these problems by building on recent advances in representation learning. NBT models reason over pre-trained word vectors, learning to compose them into distributed representations of user utterances and dialogue context. Our evaluation on two datasets shows that this approach surpasses past limitations, matching the performance of state-of-the-art models which rely on hand-crafted semantic lexicons and outperforming them when such lexicons are not provided.
We present Attract-Repel, an algorithm for improving the semantic quality of word vectors by injecting constraints extracted from lexical resources. Attract-Repel facilitates the use of constraints from mono- and cross-lingual resources, yielding semantically specialized cross-lingual vector spaces. Our evaluation shows that the method can make use of existing cross-lingual lexicons to construct high-quality vector spaces for a plethora of different languages, facilitating semantic transfer from high- to lower-resource ones. The effectiveness of our approach is demonstrated with state-of-the-art results on semantic similarity datasets in six languages. We next show that Attract-Repel-specialized vectors boost performance in the downstream task of dialogue state tracking (DST) across multiple languages. Finally, we show that cross-lingual vector spaces produced by our algorithm facilitate the training of multilingual DST models, which brings further performance improvements.
Reinforcement learning is widely used for dialogue policy optimization where the reward function often consists of more than one component, e.g., the dialogue success and the dialogue length. In this work, we propose a structured method for finding a good balance between these components by searching for the optimal reward component weighting. To render this search feasible, we use multi-objective reinforcement learning to significantly reduce the number of training dialogues required. We apply our proposed method to find optimized component weights for six domains and compare them to a default baseline.
Deep reinforcement learning (RL) methods have significant potential for dialogue policy optimisation. However, they suffer from a poor performance in the early stages of learning. This is especially problematic for on-line learning with real users. Two approaches are introduced to tackle this problem. Firstly, to speed up the learning process, two sample-efficient neural networks algorithms: trust region actor-critic with experience replay (TRACER) and episodic natural actor-critic with experience replay (eNACER) are presented. For TRACER, the trust region helps to control the learning step size and avoid catastrophic model changes. For eNACER, the natural gradient identifies the steepest ascent direction in policy space to speed up the convergence. Both models employ off-policy learning with experience replay to improve sample-efficiency. Secondly, to mitigate the cold start issue, a corpus of demonstration data is utilised to pre-train the models prior to on-line reinforcement learning. Combining these two approaches, we demonstrate a practical approach to learn deep RL-based dialogue policies and demonstrate their effectiveness in a task-oriented information seeking domain.
DialPort collects user data for connected spoken dialog systems. At present six systems are linked to a central portal that directs the user to the applicable system and suggests systems that the user may be interested in. User data has started to flow into the system.

2016

This paper presents a deep learning architecture for the semantic decoder component of a Statistical Spoken Dialogue System. In a slot-filling dialogue, the semantic decoder predicts the dialogue act and a set of slot-value pairs from a set of n-best hypotheses returned by the Automatic Speech Recognition. Most current models for spoken language understanding assume (i) word-aligned semantic annotations as in sequence taggers and (ii) delexicalisation, or a mapping of input words to domain-specific concepts using heuristics that try to capture morphological variation but that do not scale to other domains nor to language variation (e.g., morphology, synonyms, paraphrasing ). In this work the semantic decoder is trained using unaligned semantic annotations and it uses distributed semantic representation learning to overcome the limitations of explicit delexicalisation. The proposed architecture uses a convolutional neural network for the sentence representation and a long-short term memory network for the context representation. Results are presented for the publicly available DSTC2 corpus and an In-car corpus which is similar to DSTC2 but has a significantly higher word error rate (WER).
Attribution bias refers to the tendency of people to attribute successes to their own abilities but failures to external factors. In a business context an internal factor might be the restructuring of the firm and an external factor might be an unfavourable change in exchange or interest rates. In accounting research, the presence of an attribution bias has been demonstrated for the narrative sections of the annual financial reports. Previous studies have applied manual content analysis to this problem but in this paper we present novel work to automate the analysis of attribution bias through using machine learning algorithms. Previous studies have only applied manual content analysis on a small scale to reveal such a bias in the narrative section of annual financial reports. In our work a group of experts in accounting and finance labelled and annotated a list of 32,449 sentences from a random sample of UK Preliminary Earning Announcements (PEAs) to allow us to examine whether sentences in PEAs contain internal or external attribution and which kinds of attributions are linked to positive or negative performance. We wished to examine whether human annotators could agree on coding this difficult task and whether Machine Learning (ML) could be applied reliably to replicate the coding process on a much larger scale. Our best machine learning algorithm correctly classified performance sentences with 70% accuracy and detected tone and attribution in financial PEAs with accuracy of 79%.

2015

2014

In this paper we present the evaluation of our automatic methods for detecting and extracting document structure in annual financial reports. The work presented is part of the Corporate Financial Information Environment (CFIE) project in which we are using Natural Language Processing (NLP) techniques to study the causes and consequences of corporate disclosure and financial reporting outcomes. We aim to uncover the determinants of financial reporting quality and the factors that influence the quality of information disclosed to investors beyond the financial statements. The CFIE consists of the supply of information by firms to investors, and the mediating influences of information intermediaries on the timing, relevance and reliability of information available to investors. It is important to compare and contrast specific elements or sections of each annual financial report across our entire corpus rather than working at the full document level. We show that the values of some metrics e.g. readability will vary across sections, thus improving on previous research research based on full texts.

2013

2012

2011

2010

2009

2008

2007

2005

2004

2003

1997

1994

Search
Fix author