Stephen Pulman

Also published as: S. G. Pulman, Stephen G. Pulman, S.G. Pulman


2021

We introduce a new dataset for Question Rewriting in Conversational Context (QReCC), which contains 14K conversations with 80K question-answer pairs. The task in QReCC is to find answers to conversational questions within a collection of 10M web pages (split into 54M passages). Answers to questions in the same conversation may be distributed across several web pages. QReCC provides annotations that allow us to train and evaluate individual subtasks of question rewriting, passage retrieval and reading comprehension required for the end-to-end conversational question answering (QA) task. We report the effectiveness of a strong baseline approach that combines the state-of-the-art model for question rewriting, and competitive models for open-domain QA. Our results set the first baseline for the QReCC dataset with F1 of 19.10, compared to the human upper bound of 75.45, indicating the difficulty of the setup and a large room for improvement.
Named Entity Recognition (NER) and Entity Linking (EL) play an essential role in voice assistant interaction, but are challenging due to the special difficulties associated with spoken user queries. In this paper, we propose a novel architecture that jointly solves the NER and EL tasks by combining them in a joint reranking module. We show that our proposed framework improves NER accuracy by up to 3.13% and EL accuracy by up to 3.6% in F1 score. The features used also lead to better accuracies in other natural language understanding tasks, such as domain classification and semantic parsing.
Entity tags in human-machine dialog are integral to natural language understanding (NLU) tasks in conversational assistants. However, current systems struggle to accurately parse spoken queries with the typical use of text input alone, and often fail to understand the user intent. Previous work in linguistics has identified a cross-language tendency for longer speech pauses surrounding nouns as compared to verbs. We demonstrate that the linguistic observation on pauses can be used to improve accuracy in machine-learnt language understanding tasks. Analysis of pauses in French and English utterances from a commercial voice assistant shows the statistically significant difference in pause duration around multi-token entity span boundaries compared to within entity spans. Additionally, in contrast to text-based NLU, we apply pause duration to enrich contextual embeddings to improve shallow parsing of entities. Results show that our proposed novel embeddings improve the relative error rate by up to 8% consistently across three domains for French, without any added annotation or alignment costs to the parser.

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2002

2000

1999

1996

1995

1991

1987

1986

1985

1984

1980