Stefan Kopp


2025

The ability to generate explanations that are understood by explainees is the quintessence of explainable artificial intelligence. Since understanding depends on the explainee’s background and needs, recent research focused on co-constructive explanation dialogues, where an explainer continuously monitors the explainee’s understanding and adapts their explanations dynamically. We investigate the ability of large language models (LLMs) to engage as explainers in co-constructive explanation dialogues. In particular, we present a user study in which explainees interact with an LLM in two settings, one of which involves the LLM being instructed to explain a topic co-constructively. We evaluate the explainees’ understanding before and after the dialogue, as well as their perception of the LLMs’ co-constructive behavior. Our results suggest that LLMs show some co-constructive behaviors, such as asking verification questions, that foster the explainees’ engagement and can improve understanding of a topic. However, their ability to effectively monitor the current understanding and scaffold the explanations accordingly remains limited.

2020

2017

We present the flexdiam dialogue management architecture, which was developed in a series of projects dedicated to tailoring spoken interaction to the needs of users with cognitive impairments in an everyday assistive domain, using a multimodal front-end. This hybrid DM architecture affords incremental processing of uncertain input, a flexible, mixed-initiative information grounding process that can be adapted to users’ cognitive capacities and interactive idiosyncrasies, and generic mechanisms that foster transitions in the joint discourse state that are understandable and controllable by those users, in order to effect a robust interaction for users with varying capacities.

2014

The Active Listening Corpus (ALICO) is a multimodal database of spontaneous dyadic conversations with diverse speech and gestural annotations of both dialogue partners. The annotations consist of short feedback expression transcription with corresponding communicative function interpretation as well as segmentation of interpausal units, words, rhythmic prominence intervals and vowel-to-vowel intervals. Additionally, ALICO contains head gesture annotation of both interlocutors. The corpus contributes to research on spontaneous human–human interaction, on functional relations between modalities, and timing variability in dialogue. It also provides data that differentiates between distracted and attentive listeners. We describe the main characteristics of the corpus and present the most important results obtained from analyses in recent years.

2012

2011

2010

2009