Shuaijie She

Also published as: 帅杰


2025

Process Reward Models (PRMs) have emerged as a promising solution to address the reasoning mistakes of large language models (LLMs). However, existing PRMs typically output evaluation scores directly, limiting both learning efficiency and evaluation accuracy. This limitation is further compounded by the scarcity of annotated data. To address these issues, we propose Reasoning-Driven Process Reward Modeling (R-PRM), which activates inherent reasoning to enhance process-level evaluation. First, we leverage stronger LLMs to generate seed data from limited annotations, effectively activating reasoning capabilities and enabling comprehensive step-by-step evaluation. Second, we explore self-improvement of our PRM through preference optimization, without requiring additional annotated data. Third, we introduce inference time scaling to fully harness our model’s reasoning potential. Extensive experiments demonstrate R-PRM’s effectiveness: on ProcessBench and PRMBench, it surpasses strong baselines by 13.9 and 8.5 F1 scores. When applied to guide mathematical reasoning, R-PRM achieves consistent accuracy improvements of over 8.6 points across six challenging datasets. Further analysis reveals that R-PRM exhibits more comprehensive evaluation and robust generalization, indicating its broader potential.

2024

Intuitively, reasoning abilities are considered language-agnostic. However, existing LLMs exhibit inconsistent reasoning abilities across different languages, e.g., reasoning in the dominant language like English is superior to other languages due to the imbalance of multilingual training data. To enhance reasoning abilities in non-dominant languages, we propose a Multilingual-Alignment-as-Preference Optimization framework (MAPO) to align the reasoning processes in other languages with the dominant language. Specifically, we harness an off-the-shelf translation model for the consistency between answers in non-dominant and dominant languages, which we adopt as the preference for optimization, e.g., Direct Preference Optimization(DPO) or Proximal Policy Optimization (PPO). Experiments show that MAPO stably achieves significant improvements in the multilingual reasoning of various models on all three benchmarks (MSVAMP +16.2%, MGSM +6.1%, and MNumGLUESub +13.3%), with improved reasoning consistency across languages. The project is available at https://github.com/NJUNLP/MAPO.
“进入大语言模型时代以来,传统的多语言研究模式发生了巨大变化。一些传统任务得到了突破性的解决,也出现了多种新任务,以及许多以多语言大模型为基础、面向大模型能力提升的多语言研究工作。本文针对研究领域中的这一新变化,整理归纳了进入大模型时代以来的多语言研究进展,包括多语言大模型、数据集、任务,以及相关的前沿研究方向、研究挑战等,希望能为大模型范式下的多语言研究的未来发展提供参考和帮助。”
Large language models show compelling performance on reasoning tasks but they tend to perform much worse in languages other than English. This is unsurprising given that their training data largely consists of English text and instructions. A typical solution is to translate instruction data into all languages of interest, and then train on the resulting multilingual data, which is called translate-training. This approach not only incurs high cost, but also results in poorly translated data due to the non-standard formatting of mathematical chain-of-thought. In this paper, we explore the benefits of question alignment, where we train the model to translate reasoning questions into English by finetuning on X-English parallel question data. In this way we perform targeted, in-domain language alignment which makes best use of English instruction data to unlock the LLMs’ multilingual reasoning abilities. Experimental results on LLaMA2-13B show that question alignment leads to consistent improvements over the translate-training approach: an average improvement of 11.3% and 16.1% accuracy across ten languages on the MGSM and MSVAMP multilingual reasoning benchmarks.
Decoding by contrasting layers (DoLa), is designed to improve the generation quality of large language models (LLMs) by contrasting the prediction probabilities between an early exit output (amateur logits) and the final output (expert logits).However, we find that this approach does not work well on non-English tasks.Inspired by previous interpretability work on language transition during the model’s forward pass, we discover that this issue arises from a language mismatch between early exit output and final output.In this work, we propose an improved contrastive decoding algorithm that is effective for diverse languages beyond English.To obtain more helpful amateur logits, we devise two strategies to skip a set of bottom, language-agnostic layers based on our preliminary analysis.Experimental results on multilingual reasoning benchmarks demonstrate that our proposed method outperforms previous contrastive decoding baselines and substantially improves LLM’s chain-of-thought reasoning accuracy across 11 languages.
LLMs (Large Language Models) usually interact with users in the form of dialogue and generate responses following their instructions, which naturally require dialogue comprehension abilities. However, dialogue comprehension is a general language ability which is hard to be evaluated directly. In this work, we propose to perform the evaluation focusing on the factual consistency issue with the help of the dialogue summarization task. Besides evaluating and analyzing the dialogue summarization performance (DIAC-Sum) of different LLMs, we also derive factual questions from the generated summaries and use them as a more flexible measurement of dialogue comprehension (DIAC-FactQA). Our evaluation shows that, on average, 26.8% of the summaries generated by LLMs contain factual inconsistency. Even ChatGPT, the strongest model evaluated, has such errors in 16% of its summaries. For answering the factual questions, which is more challenging, the average error rate of all evaluated LLMs is 36.1%. Both results indicate serious deficiencies. Detailed analysis shows that the understanding of subject/object of the conversation is still challenging for LLMs. Furthermore, to stimulate and enhance the dialogue comprehension ability of LLMs, we propose a fine-tuning paradigm with auto-constructed multi-task data, which achieved a relative error rate reduction of 11% on DIAC-FactQA.

2023

Machine translation (MT) quality estimation (QE) is a crucial task to estimate the quality of MT outputs when reference translations are unavailable. Many studies focus on generating pseudo data using large parallel corpus and achieve remarkable success in the supervised setting. However, pseudo data solutions are less satisfying in unsupervised scenarios because the pseudo labels are inaccurate or the pseudo translations differ from the real ones. To address these problems, we propose to generate pseudo data using the MT model with constrained beam search (CBSQE). CBSQE preserves the reference parts with high MT probabilities as correct translations, while the rest parts as the wrong ones for MT generation. Therefore, CBSQE can reduce the false negative labels caused by synonyms. Overall, beam search will prefer a more real hypothesis with a higher MT generation likelihood. Extensive experiments demonstrate that CBSQE outperforms strong baselines in both supervised and unsupervised settings. Analyses further show the superiority of CBSQE. The code is available at https://github.com/NJUNLP/njuqe.