Shogo Okada


2025

Vision Language Models (VLMs) often struggle with culture-specific knowledge, particularly in languages other than English and in underrepresented cultural contexts. To evaluate their understanding of such knowledge, we introduce WorldCuisines, a massive-scale benchmark for multilingual and multicultural, visually grounded language understanding. This benchmark includes a visual question answering (VQA) dataset with text-image pairs across 30 languages and dialects, spanning 9 language families and featuring over 1 million data points, making it the largest multicultural VQA benchmark to date. It includes tasks for identifying dish names and their origins. We provide evaluation datasets in two sizes (12k and 60k instances) alongside a training dataset (1 million instances). Our findings show that while VLMs perform better with correct location context, they struggle with adversarial contexts and predicting specific regional cuisines and languages. To support future research, we release a knowledge base with annotated food entries and images along with the VQA data.

2023

Estimating the subjective impressions of human users during a dialogue is necessary when constructing a dialogue system that can respond adaptively to their emotional states. However, such subjective impressions (e.g., how much the user enjoys the dialogue) are inherently ambiguous, and the annotation results provided by multiple annotators do not always agree because they depend on the subjectivity of the annotators. In this paper, we analyzed the annotation results using 13,226 exchanges from 155 participants in a multimodal dialogue corpus called Hazumi that we had constructed, where each exchange was annotated by five third-party annotators. We investigated the agreement between the subjective annotations given by the third-party annotators and the participants themselves, on both per-exchange annotations (i.e., participant’s sentiments) and per-dialogue (-participant) annotations (i.e., questionnaires on rapport and personality traits). We also investigated the conditions under which the annotation results are reliable. Our findings demonstrate that the dispersion of third-party sentiment annotations correlates with agreeableness of the participants, one of the Big Five personality traits.

2018