Shengbin Yue


2025

The reward model has become increasingly important in alignment, assessment, and data construction for large language models (LLMs). Most existing researchers focus on enhancing reward models through data improvements, following the conventional training framework for reward models that directly optimizes the predicted rewards.In this paper, we propose a hybrid alignment framework **HAF-RM** for reward model training by introducing an additional constraint on token-level policy probabilities in addition to the reward score. It can simultaneously supervise the internal preference model at the token level and optimize the mapping layer of the reward model at the sequence level.Experiment results on five datasets sufficiently show the validity and effectiveness of our proposed hybrid framework for training a high-quality reward model.By decoupling the reward modeling procedure and incorporating hybrid supervision, our **HAF-RM** framework offers a principled and effective approach to enhancing the performance and alignment of reward models, a critical component in the responsible development of powerful language models. We release our code at [https://haf-rm.github.io](https://haf-rm.github.io).
Large Language Models (LLMs) have significantly advanced legal intelligence, but the scarcity of scenario data impedes the progress toward interactive legal scenarios. This paper introduces a Multi-agent Legal Simulation Driver (MASER) to scalably generate synthetic data by simulating interactive legal scenarios. Leveraging real-legal case sources, MASER ensures the consistency of legal attributes between participants and introduces a supervisory mechanism to align participants’ characters and behaviors as well as addressing distractions. A Multi-stage Interactive Legal Evaluation (MILE) benchmark is further constructed to evaluate LLMs’ performance in dynamic legal scenarios. Extensive experiments confirm the effectiveness of our framework.