Sergey Koshelev


2024

This study explores four methods of generating paraphrases in Malayalam, utilizing resources available for English paraphrasing and pre-trained Neural Machine Translation (NMT) models. We evaluate the resulting paraphrases using both automated metrics, such as BLEU, METEOR, and cosine similarity, as well as human annotation. Our findings suggest that automated evaluation measures may not be fully appropriate for Malayalam, as they do not consistently align with human judgment. This discrepancy underscores the need for more nuanced paraphrase evaluation approaches especially for highly agglutinative languages.

2022

We present the results of the WMT’22 SharedTask on Large-Scale Machine Translation Evaluation for African Languages. The shared taskincluded both a data and a systems track, alongwith additional innovations, such as a focus onAfrican languages and extensive human evaluation of submitted systems. We received 14system submissions from 8 teams, as well as6 data track contributions. We report a largeprogress in the quality of translation for Africanlanguages since the last iteration of this sharedtask: there is an increase of about 7.5 BLEUpoints across 72 language pairs, and the average BLEU scores went from 15.09 to 22.60.