Scott Feltman


2025

Current speech encoding pipelines often rely on an additional text-based LM to get robust representations of human communication, even though SotA speech-to-text models often have a LM within. This work proposes an approach to improve the LM within an audio model such that the subsequent text-LM is unnecessary. We introduce **WhiSPA** (**Whi**sper with **S**emantic and **P**sychological **A**lignment), which leverages a novel audio training objective: contrastive loss with a language model embedding as a teacher. Using over 500k speech segments from mental health audio interviews, we evaluate the utility of aligning Whisper’s latent space with semantic representations from a text autoencoder (SBERT) and lexically derived embeddings of basic psychological dimensions: emotion and personality. Over self-supervised affective tasks and downstream psychological tasks, WhiSPA surpasses current speech encoders, achieving an average error reduction of 73.4% and 83.8%, respectively. WhiSPA demonstrates that it is not always necessary to run a subsequent text LM on speech-to-text output in order to get a rich psychological representation of human communication.
Recent work has suggested detection of cognitive distortions as an impactful task for NLP in the clinical space, but the connection between language-detected distortions and validated mental health outcomes has been elusive. In this work, we evaluate the co-occurrence of (a) 10 distortions derived from language-based detectors trained over two common distortion datasets with (b) 12 mental health outcomes contained within two new language-to-mental-health datasets: DS4UD and iHiTOP. We find higher rates of distortions for those with greater mental health condition severity (ranging from r = 0.16 for thought disorders to r = 0.46 for depressed mood), and that the specific distortions of should statements and fortune telling were associated with a depressed mood and being emotionally drained, respectively. This suggested that language-based assessments of cognitive distortion could play a significant role in detection and monitoring of mental health conditions.