Sameer Pradhan

Also published as: Sameer S. Pradhan, S. Pradhan


2025

2024

In this paper, we present our exploration of annotating Chinese word senses using English WordNet synsets, with examples extracted from OntoNotes Chinese sense inventories. Given a target word along with the example that contains it, the annotators select a WordNet synset that best describes the meaning of the target word in the context. The result demonstrates an inter-annotator agreement of 38% between two annotators. We delve into the instances of disagreement by comparing the two annotated synsets, including their positions within the WordNet hierarchy. The examination reveals intriguing patterns among closely related synsets, shedding light on similar concepts represented within the WordNet structure. The data offers as an indirect linking of Chinese word senses defined in OntoNotes Chinese sense inventories to WordNet sysnets, and thus promotes the value of the OntoNotes corpus. Compared to a direct linking of Chinese word senses to WordNet synsets, the example-based annotation has the merit of not being affected by inaccurate sense definitions and thus offers a new way of mapping WordNets of different languages. At the same time, the annotated data also serves as a valuable linguistic resource for exploring potential lexical differences between English and Chinese, with potential contributions to the broader understanding of cross-linguistic semantic mapping
This article describes the [corpus-name] corpus developed as part of the [project-name] project. To the best of our knowledge, this is one of the largest collections of children’s conversational speech that is freely available for non-commercial use under the creative commons license (CC BY-NC-SA 4.0). It comprises approximately 400 hours of speech, spanning some 230K utterances spread across about 10,500 virtual tutor sessions. Roughly 1,300 third, fourth and fifth grade students contributed to this corpus. The current release contains roughly 100K transcribed utterances. It is our hope that the corpus can be used to improve automatic speech recognition models and algorithms. We report the word error rate achieved on the test set using a model trained on the training and development portion of the corpus. The git repository of the corpus contains the complete training and evaluation setup in order to facilitate a fair and consistent evaluation. It is our hope that this corpus will contribute to the creation and evaluation of conversational AI agents having a better understanding of children’s speech, potentially opening doors to novel, effective, learning and therapeutic interventions.
Singleton mentions, i.e. entities mentioned only once in a text, are important to how humans understand discourse from a theoretical perspective. However previous attempts to incorporate their detection in end-to-end neural coreference resolution for English have been hampered by the lack of singleton mention spans in the OntoNotes benchmark. This paper addresses this limitation by combining predicted mentions from existing nested NER systems and features derived from OntoNotes syntax trees. With this approach, we create a near approximation of the OntoNotes dataset with all singleton mentions, achieving ~94% recall on a sample of gold singletons. We then propose a two-step neural mention and coreference resolution system, named SPLICE, and compare its performance to the end-to-end approach in two scenarios: the OntoNotes test set and the out-of-domain (OOD) OntoGUM corpus. Results indicate that reconstructed singleton training yields results comparable to end-to-end systems for OntoNotes, while improving OOD stability (+1.1 avg. F1). We conduct error analysis for mention detection and delve into its impact on coreference clustering, revealing that precision improvements deliver more substantial benefits than increases in recall for resolving coreference chains.
The aim of the Universal Anaphora initiative is to push forward the state of the art in anaphora and anaphora resolution by expanding the aspects of anaphoric interpretation which are or can be reliably annotated in anaphoric corpora, producing unified standards to annotate and encode these annotations, delivering datasets encoded according to these standards, and developing methods for evaluating models that carry out this type of interpretation. Although several papers on aspects of the initiative have appeared, no overall description of the initiative’s goals, proposals and achievements has been published yet except as an online draft. This paper aims to fill this gap, as well as to discuss its progress so far.

2023

The aim of the Universal Anaphora initiative is to push forward the state of the art both in anaphora (coreference) annotation and in the evaluation of models for anaphora resolution. The first release of the Universal Anaphora Scorer (Yu et al., 2022b) supported the scoring not only of identity anaphora as in the Reference Coreference Scorer (Pradhan et al., 2014) but also of split antecedent anaphoric reference, bridging references, and discourse deixis. That scorer was used in the CODI-CRAC 2021/2022 Shared Tasks on Anaphora Resolution in Dialogues (Khosla et al., 2021; Yu et al., 2022a). A modified version of the scorer supporting discontinuous markables and the COREFUD markup format was also used in the CRAC 2022 Shared Task on Multilingual Coreference Resolution (Zabokrtsky et al., 2022). In this paper, we introduce the second release of the scorer, merging the two previous versions, which can score reference with discontinuous markables and zero anaphora resolution.

2022

This paper identifies novel characteristics necessary to successfully represent multiple streams of natural language information from speech and text simultaneously, and proposes a multi-tiered system that implements these characteristics centered around a declarative configuration. The system facilitates easy incremental extension by allowing the creation of composable workflows of loosely coupled extensions, or plugins, allowing simple intial systems to be extended to accomodate rich representations while maintaining high data integrity. Key to this is leveraging established tools and technologies. We demonstrate using a small example.
The aim of the Universal Anaphora initiative is to push forward the state of the art in anaphora and anaphora resolution by expanding the aspects of anaphoric interpretation which are or can be reliably annotated in anaphoric corpora, producing unified standards to annotate and encode these annotations, deliver datasets encoded according to these standards, and developing methods for evaluating models carrying out this type of interpretation. Such expansion of the scope of anaphora resolution requires a comparable expansion of the scope of the scorers used to evaluate this work. In this paper, we introduce an extended version of the Reference Coreference Scorer (Pradhan et al., 2014) that can be used to evaluate the extended range of anaphoric interpretation included in the current Universal Anaphora proposal. The UA scorer supports the evaluation of identity anaphora resolution and of bridging reference resolution, for which scorers already existed but not integrated in a single package. It also supports the evaluation of split antecedent anaphora and discourse deixis, for which no tools existed. The proposed approach to the evaluation of split antecedent anaphora is entirely novel; the proposed approach to the evaluation of discourse deixis leverages the encoding of discourse deixis proposed in Universal Anaphora to enable the use for discourse deixis of the same metrics already used for identity anaphora. The scorer was tested in the recent CODI-CRAC 2021 Shared Task on Anaphora Resolution in Dialogues.
This paper describes the evolution of the PropBank approach to semantic role labeling over the last two decades. During this time the PropBank frame files have been expanded to include non-verbal predicates such as adjectives, prepositions and multi-word expressions. The number of domains, genres and languages that have been PropBanked has also expanded greatly, creating an opportunity for much more challenging and robust testing of the generalization capabilities of PropBank semantic role labeling systems. We also describe the substantial effort that has gone into ensuring the consistency and reliability of the various annotated datasets and resources, to better support the training and evaluation of such systems
Most existing proposals about anaphoric zero pronoun (AZP) resolution regard full mention coreference and AZP resolution as two independent tasks, even though the two tasks are clearly related. The main issues that need tackling to develop a joint model for zero and non-zero mentions are the difference between the two types of arguments (zero pronouns, being null, provide no nominal information) and the lack of annotated datasets of a suitable size in which both types of arguments are annotated for languages other than Chinese and Japanese. In this paper, we introduce two architectures for jointly resolving AZPs and non-AZPs, and evaluate them on Arabic, a language for which, as far as we know, there has been no prior work on joint resolution. Doing this also required creating a new version of the Arabic subset of the standard coreference resolution dataset used for the CoNLL-2012 shared task (Pradhan et al.,2012) in which both zeros and non-zeros are included in a single dataset.

2021

SOTA coreference resolution produces increasingly impressive scores on the OntoNotes benchmark. However lack of comparable data following the same scheme for more genres makes it difficult to evaluate generalizability to open domain data. This paper provides a dataset and comprehensive evaluation showing that the latest neural LM based end-to-end systems degrade very substantially out of domain. We make an OntoNotes-like coreference dataset called OntoGUM publicly available, converted from GUM, an English corpus covering 12 genres, using deterministic rules, which we evaluate. Thanks to the rich syntactic and discourse annotations in GUM, we are able to create the largest human-annotated coreference corpus following the OntoNotes guidelines, and the first to be evaluated for consistency with the OntoNotes scheme. Out-of-domain evaluation across 12 genres shows nearly 15-20% degradation for both deterministic and deep learning systems, indicating a lack of generalizability or covert overfitting in existing coreference resolution models.
SOTA coreference resolution produces increasingly impressive scores on the OntoNotes benchmark. However lack of comparable data following the same scheme for more genres makes it difficult to evaluate generalizability to open domain data. Zhu et al. (2021) introduced the creation of the OntoGUM corpus for evaluating geralizability of the latest neural LM-based end-to-end systems. This paper covers details of the mapping process which is a set of deterministic rules applied to the rich syntactic and discourse annotations manually annotated in the GUM corpus. Out-of-domain evaluation across 12 genres shows nearly 15-20% degradation for both deterministic and deep learning systems, indicating a lack of generalizability or covert overfitting in existing coreference resolution models.

2020

2019

2018

2016

2015

2014

This article discusses the requirements of a formal specification for the annotation of temporal information in clinical narratives. We discuss the implementation and extension of ISO-TimeML for annotating a corpus of clinical notes, known as the THYME corpus. To reflect the information task and the heavily inference-based reasoning demands in the domain, a new annotation guideline has been developed, “the THYME Guidelines to ISO-TimeML (THYME-TimeML)”. To clarify what relations merit annotation, we distinguish between linguistically-derived and inferentially-derived temporal orderings in the text. We also apply a top performing TempEval 2013 system against this new resource to measure the difficulty of adapting systems to the clinical domain. The corpus is available to the community and has been proposed for use in a SemEval 2015 task.

2013

2012

2011

2010

2009

2008

2007

2005

2004

2001

Search
Fix author