Ruoyu Sun


2025

This paper addresses the critical need for democratizing large language models (LLM) in the Arab world, a region that has seen slower progress in developing models comparable to state-of-the-art offerings like GPT-4 or GPT-3.5, due to a predominant focus on mainstream languages (e.g., English and Chinese). One practical objective for Arabic LLMs is to utilize Arabic-specific vocabulary in the tokenizer to accelerate decoding. However, using a different vocabulary often leads to degradation of the model’s learned knowledge, since many words become out-of-vocabulary (OOV) at the beginning of training. Inspired by the vocabulary learning during Second Language (Arabic) Acquisition for humans, the released AraLLaMA employs progressive vocabulary expansion, which is implemented by a modified BPE algorithm that progressively extends the Arabic subwords in its dynamic vocabulary during training, thereby balancing the OOV ratio at every stage. The ablation study demonstrated the effectiveness of Progressive Vocabulary Expansion.Moreover, AraLLaMA achieves decent performance comparable to the best Arabic LLMs across a variety of Arabic benchmarks. Our model weights are available at: https://github.com/FreedomIntelligence/AraLLaMa.
Privacy-sensitive users require deploying large language models (LLMs) within their own infrastructure (on-premises) to safeguard private data and enable customization. However, vulnerabilities in local environments can lead to unauthorized access and potential model theft. To address this, prior research on small models has explored securing only the output layer within hardware-secured devices to balance model confidentiality and customization. Yet this approach fails to protect LLMs effectively. In this paper, we discover that (1) query-based distillation attacks targeting the secured top layer can produce a functionally equivalent replica of the victim model; (2) securing the same number of layers, bottom layers before a transition layer provide stronger protection against distillation attacks than top layers, with comparable effects on customization performance; and (3) the number of secured layers creates a trade-off between protection and customization flexibility. Based on these insights, we propose SOLID, a novel deployment framework that secures a few bottom layers in a secure environment and introduces an efficient metric to optimize the trade-off by determining the ideal number of hidden layers. Extensive experiments on five models (1.3B to 70B parameters) demonstrate that SOLID outperforms baselines, achieving a better balance between protection and downstream customization.

2024

The goal of portfolio management is to simultaneously maximize the accumulated return and also to control risk. In consecutive trading periods, portfolio manager needs to continuously adjust the portfolio weights based on the factors which can cause price fluctuation in the market. In the stock market, the factors affecting the stock price can be divided into two categories. The first is price fluctuations caused by irrational investment of the speculators. The second is endogenous value changes caused by operations of the company. In recent years, with the advancement of artificial intelligence technology, reinforcement learning (RL) algorithms have been increasingly employed by scholars to address financial problems, particularly in the area of portfolio management. However, the deep RL models proposed by these scholars in the past have focused more on analyzing the price changes caused by the investment behavior of speculators in response to technical indicators of actual stock prices. In this research, we introduce an RL-based framework called FinBPM, which takes both the factor pertaining to the impact on operations of the company and the factor of the irrational investment of the speculator into consideration. For our experimentation, we randomly selected twelve stocks from the Dow Jones Industrial Index to construct our portfolio. The experimental results reveal that, in comparison to conventional reinforcement learning methods, our approach with at least 13.26% increase over other methods compared. Additionally, it achieved the best Sharpe ratio of 2.77, effectively maximizing the return per unit of risk.
Prompt optimization emerges as an important technique for adapting Large Language Models (LLMs) to specific tasks. Unfortunately, LLM proprietors often limit access to models’ internal weights, confining users to inference API services. This restriction poses a significant challenge for prompt optimization, as conventional optimization-based algorithms rely heavily on gradient information, which is unavailable via inference APIs. Addressing this challenge, this paper presents the Zeroth-Order Tuning (ZOT) approach, which enables efficient prompt tuning solely via inference APIs. ZOT adopts the zeroth-order optimization framework, utilizing finite differences to approximate gradient information. We further incorporate ZOT with gradient clipping and momentum techniques to enhance the tuning effectiveness. Experimental results show that ZOT outperforms existing black-box prompt tuning methods in terms of both task-specific performance and convergence speed. Furthermore, we provide a theoretical explanation for the unexpectedly strong performance of zeroth-order methods on LLM prompt tuning. By introducing the concept of effective dimension, we establish a strong connection between the inherently low effective dimension of prompt spaces and the superior convergence speed of zeroth-order methods. Our code is available at https://github.com/ZhanHeshen/ZOT.
This paper is devoted to the development of a localized Large Language Model (LLM) specifically for Arabic, a language imbued with unique cultural characteristics inadequately addressed by current mainstream models. Significant concerns emerge when addressing cultural sensitivity and local values. To address this, the paper proposes a comprehensive solution that includes further pre-training with Arabic texts, Supervised Fine-Tuning (SFT) utilizing native Arabic instructions, and GPT-4 responses in Arabic, alongside Reinforcement Learning with AI Feedback (RLAIF) employing a reward model attuned to local culture and values. The goal is to cultivate culturally cognizant and value-aligned Arabic LLMs capable of accommodating the diverse, application-specific needs of Arabic-speaking communities. Comprehensive evaluations reveal that the resulting model, dubbed ‘AceGPT’, sets the state-of-the-art standard for open Arabic LLMs across various benchmarks. Codes, data, and models are in https://github.com/FreedomIntelligence/AceGPT.