Rooweither Mabuya


2025

People worldwide use language in subtle and complex ways to express emotions. Although emotion recognition–an umbrella term for several NLP tasks–impacts various applications within NLP and beyond, most work in this area has focused on high-resource languages. This has led to significant disparities in research efforts and proposed solutions, particularly for under-resourced languages, which often lack high-quality annotated datasets.In this paper, we present BRIGHTER–a collection of multi-labeled, emotion-annotated datasets in 28 different languages and across several domains. BRIGHTER primarily covers low-resource languages from Africa, Asia, Eastern Europe, and Latin America, with instances labeled by fluent speakers. We highlight the challenges related to the data collection and annotation processes, and then report experimental results for monolingual and crosslingual multi-label emotion identification, as well as emotion intensity recognition. We analyse the variability in performance across languages and text domains, both with and without the use of LLMs, and show that the BRIGHTER datasets represent a meaningful step towards addressing the gap in text-based emotion recognition.
Slot-filling and intent detection are well-established tasks in Conversational AI. However, current large-scale benchmarks for these tasks often exclude evaluations of low-resource languages and rely on translations from English benchmarks, thereby predominantly reflecting Western-centric concepts. In this paper, we introduce “INJONGO” - a multicultural, open-source benchmark dataset for 16 African languages with utterances generated by native speakers across diverse domains, including banking, travel, home, and dining. Through extensive experiments, we benchmark fine-tuning multilingual transformer models and prompting large language models (LLMs), and show the advantage of leveraging African-cultural utterances over Western-centric utterances for improving cross-lingual transfer from the English language. Experimental results reveal that current LLMs struggle with the slot-filling task, with GPT-4o achieving an average performance of 26 F1. In contrast, intent detection performance is notably better, with an average accuracy of 70.6%, though it still falls short of fine-tuning baselines. When compared to the English language, GPT-4o and fine-tuning baselines perform similarly on intent detection, achieving an accuracy of approximately 81%. Our findings suggest that LLMs performance is still behind for many low-resource African languages, and more work is needed to further improve their downstream performance.
Hate speech and abusive language are global phenomena that need socio-cultural background knowledge to be understood, identified, and moderated. However, in many regions of the Global South, there have been several documented occurrences of (1) absence of moderation and (2) censorship due to the reliance on keyword spotting out of context. Further, high-profile individuals have frequently been at the center of the moderation process, while large and targeted hate speech campaigns against minorities have been overlooked.These limitations are mainly due to the lack of high-quality data in the local languages and the failure to include local communities in the collection, annotation, and moderation processes. To address this issue, we present AfriHate: a multilingual collection of hate speech and abusive language datasets in 15 African languages. Each instance in AfriHate is a tweet annotated by native speakers familiar with the regional culture. We report the challenges related to the construction of the datasets and present various classification baseline results with and without using LLMs. We find that model performance highly depends on the language and that multilingual models can help boost performance in low-resource settings.
Despite the widespread adoption of Large language models (LLMs), their remarkable capabilities remain limited to a few high-resource languages. Additionally, many low-resource languages (e.g. African languages) are often evaluated only on basic text classification tasks due to the lack of appropriate or comprehensive benchmarks outside of high-resource languages. In this paper, we introduce IrokoBench—a human-translated benchmark dataset for 17 typologically-diverse low-resource African languages covering three tasks: natural language inference(AfriXNLI), mathematical reasoning(AfriMGSM), and multi-choice knowledge-based QA(AfriMMLU). We use IrokoBench to evaluate zero-shot, few-shot, and translate-test settings(where test sets are translated into English) across 10 open and four proprietary LLMs. Our evaluation reveals a significant performance gap between high-resource languages (such as English and French) and low-resource African languages. We observe a significant performance gap between open and proprietary models, with the highest performing open model, Gemma 2 27B only at 63% of the best-performing proprietary model GPT-4o performance. Machine translating the test set to English before evaluation helped to close the gap for larger models that are English-centric, like Gemma 2 27B and LLaMa 3.1 70B. These findings suggest that more efforts are needed to develop and adapt LLMs for African languages.

2024

2023

In this paper, we present AfricaPOS, the largest part-of-speech (POS) dataset for 20 typologically diverse African languages. We discuss the challenges in annotating POS for these languages using the universal dependencies (UD) guidelines. We conducted extensive POS baseline experiments using both conditional random field and several multilingual pre-trained language models. We applied various cross-lingual transfer models trained with data available in the UD. Evaluating on the AfricaPOS dataset, we show that choosing the best transfer language(s) in both single-source and multi-source setups greatly improves the POS tagging performance of the target languages, in particular when combined with parameter-fine-tuning methods. Crucially, transferring knowledge from a language that matches the language family and morphosyntactic properties seems to be more effective for POS tagging in unseen languages.
African languages have far less in-language content available digitally, making it challenging for question answering systems to satisfy the information needs of users. Cross-lingual open-retrieval question answering (XOR QA) systems – those that retrieve answer content from other languages while serving people in their native language—offer a means of filling this gap. To this end, we create Our Dataset, the first cross-lingual QA dataset with a focus on African languages. Our Dataset includes 12,000+ XOR QA examples across 10 African languages. While previous datasets have focused primarily on languages where cross-lingual QA augments coverage from the target language, Our Dataset focuses on languages where cross-lingual answer content is the only high-coverage source of answer content. Because of this, we argue that African languages are one of the most important and realistic use cases for XOR QA. Our experiments demonstrate the poor performance of automatic translation and multilingual retrieval methods. Overall, Our Dataset proves challenging for state-of-the-art QA models. We hope that the dataset enables the development of more equitable QA technology.
In this study, we investigate the effectiveness of using cross-lingual word embeddings for zero-shot transfer learning between a language with an abundant resource, English, and a languagewith limited resource, isiZulu. IsiZulu is a part of the South African Nguni language family, which is characterised by complex agglutinating morphology. We use VecMap, an open source tool, to obtain cross-lingual word embeddings. To perform an extrinsic evaluation of the effectiveness of the embeddings, we train a news classifier on labelled English data in order to categorise unlabelled isiZulu data using zero-shot transfer learning. In our study, we found our model to have a weighted average F1-score of 0.34. Our findings demonstrate that VecMap generates modular word embeddings in the cross-lingual space that have an impact on the downstream classifier used for zero-shot transfer learning.

2022

African languages are spoken by over a billion people, but they are under-represented in NLP research and development. Multiple challenges exist, including the limited availability of annotated training and evaluation datasets as well as the lack of understanding of which settings, languages, and recently proposed methods like cross-lingual transfer will be effective. In this paper, we aim to move towards solutions for these challenges, focusing on the task of named entity recognition (NER). We present the creation of the largest to-date human-annotated NER dataset for 20 African languages. We study the behaviour of state-of-the-art cross-lingual transfer methods in an Africa-centric setting, empirically demonstrating that the choice of source transfer language significantly affects performance. While much previous work defaults to using English as the source language, our results show that choosing the best transfer language improves zero-shot F1 scores by an average of 14% over 20 languages as compared to using English.

2020

Search
Co-authors
Venues
Fix author