Roger Evans

Also published as: R Evans

Other people with similar names: Richard Evans


2017

Sentiment analysis is the computational task of extracting sentiment from a text document – for example whether it expresses a positive, negative or neutral opinion. Various approaches have been introduced in recent years, using a range of different techniques to extract sentiment information from a document. Measuring these methods against a gold standard dataset is a useful way to evaluate such systems. However, different sentiment analysis techniques represent sentiment values in different ways, such as discrete categorical classes or continuous numerical sentiment scores. This creates a challenge for evaluating and comparing such systems; in particular assessing numerical scores against datasets that use fixed classes is difficult, because the numerical outputs have to be mapped onto the ordered classes. This paper proposes a novel calibration technique that uses precision vs. recall curves to set class thresholds to optimize a continuous sentiment analyser’s performance against a discrete gold standard dataset. In experiments mapping a continuous score onto a three-class classification of movie reviews, we show that calibration results in a substantial increase in f-score when compared to a non-calibrated mapping.

2015

2013

2011

2009

2007

2006

2005

2004

2003

2002

2001

2000

1998

1997

In wide-coverage lexicalized grammars many of the elementary structures have substructures in common. This means that during parsing some of the computation associated with different structures is duplicated. This paper explores ways in which the grammar can be precompiled into finite state automata so that some of this shared structure results in shared computation at run-time.

1996

1995

1993

1989