Robert Nickel


2025

Connectivity and message propagation are central, yet often underutilised, sources of information in misinformation detection—especially on poorly moderated platforms such as Telegram, which has become a critical channel for misinformation dissemination, namely in the German electoral context. In this paper, we introduce Misinfo-TeleGraph, the first German-language Telegram-based graph dataset for misinformation detection. It includes over 5 million messages from public channels, enriched with metadata, channel relationships, and both weak and strong labels. These labels are derived via semantic similarity to fact-checks and news articles using M3-embeddings, as well as manual annotation. To establish reproducible baselines, we evaluate both text-only models and graph neural networks (GNNs) that incorporate message forwarding as a network structure. Our results show that GraphSAGE with LSTM aggregation significantly outperforms text-only baselines in terms of Matthews Correlation Coefficient (MCC) and F1-score. We further evaluate the impact of subscribers, view counts, and automatically versus human-created labels on performance, and highlight both the potential and challenges of weak supervision in this domain. This work provides a reproducible benchmark and open dataset for future research on misinformation detection in German-language Telegram networks and other low-moderation social platforms.

2020

Traditional computational authorship attribution describes a classification task in a closed-set scenario. Given a finite set of candidate authors and corresponding labeled texts, the objective is to determine which of the authors has written another set of anonymous or disputed texts. In this work, we propose a probabilistic autoencoding framework to deal with this supervised classification task. Variational autoencoders (VAEs) have had tremendous success in learning latent representations. However, existing VAEs are currently still bound by limitations imposed by the assumed Gaussianity of the underlying probability distributions in the latent space. In this work, we are extending a VAE with an embedded Gaussian mixture model to a Student-t mixture model, which allows for an independent control of the “heaviness” of the respective tails of the implied probability densities. Experiments over an Amazon review dataset indicate superior performance of the proposed method.