Razieh Ehsani


2019

Past prescriptions constitute a central element in patient records. These are often written in an unstructured and brief form. Extracting information from such prescriptions enables the development of automated processes in the medical data mining field. This paper presents a Conditional Random Fields (CRFs) based approach to extract relevant information from prescriptions. We focus on Finnish language prescriptions and make use of Finnish language specific features. Our labeling accuracy is 95%, which compares favorably to the current state-of-the-art in English language prescriptions. This, to the best of our knowledge, is the first such work for the Finnish language.

2018

MorAz is an open-source morphological analyzer for Azerbaijani Turkish. The analyzer is available through both as a website for interactive exploration and as a RESTful web service for integration into a natural language processing pipeline. MorAz implements the morphology of Azerbaijani Turkish in two-level using Helsinki finite-state transducer and wraps the analyzer with python scripts in a Django instance.

2017

2014

2012