Rajeev Sangal


2020

2018

2016

2015

2014

2013

2012

2011

2010

In this paper, we present the insights gained from a detailed study of coupling a highly modular English-Hindi RBMT system with a standard phrase-based SMT system. Coupling the RBMT and SMT systems at various stages in the RBMT pipeline, we observe the effects of the source transformations at each stage on the performance of the coupled MT system. We propose an architecture that systematically exploits the structural transfer and robust generation capabilities of the RBMT system. Working with the English-Hindi language pair, we show that the coupling configurations explored in our experiments help address different aspects of the typological divergence between these languages. In spite of working with very small datasets, we report significant improvements both in terms of BLEU (7.14 and 0.87 over the RBMT and the SMT baselines respectively) and subjective evaluation (relative decrease of 17% in SSER).
Grammars play an important role in many Natural Language Processing (NLP) applications. The traditional approach to creating grammars manually, besides being labor-intensive, has several limitations. With the availability of large scale syntactically annotated treebanks, it is now possible to automatically extract an approximate grammar of a language in any of the existing formalisms from a corresponding treebank. In this paper, we present a basic approach to extract grammars from dependency treebanks of two Indian languages, Hindi and Telugu. The process of grammar extraction requires a generalization mechanism. Towards this end, we explore an approach which relies on generalization of argument structure over the verbs based on their syntactic similarity. Such a generalization counters the effect of data sparseness in the treebanks. A grammar extracted using this system can not only expand already existing knowledge bases for NLP tasks such as parsing, but also aid in the creation of grammars for languages where none exist. Further, we show that the grammar extraction process can help in identifying annotation errors and thus aid in the task of the treebank validation.

2009

2008

2005

2002

2000

1993

1990

1989

A parser is described here based on the Cocke-Young-Kassami algorithm which uses immediate dominance and linear precedence rules together with various feature inheritance conventions. The meta rules in the grammar are not applied beforehand but only when needed. This ensures that the rule set is kept to a minimum. At the same time, determining what rule to expand by applying which meta-rule is done in an efficient manner using the meta-rule reference table. Since this table is generated during “compilation” stage, its generation does not add to parsing time.