Quoc Khanh Do

Also published as: Quoc-Khanh Do


2016

2015

Alors que les réseaux neuronaux occupent une place de plus en plus importante dans le traitement automatique des langues, les méthodes d’apprentissage actuelles utilisent pour la plupart des critères qui sont décorrélés de l’application. Cet article propose un nouveau cadre d’apprentissage discriminant pour l’estimation des modèles continus de traduction. Ce cadre s’appuie sur la définition d’un critère d’optimisation permettant de prendre en compte d’une part la métrique utilisée pour l’évaluation de la traduction et d’autre part l’intégration de ces modèles au sein des systèmes de traduction automatique. De plus, cette méthode d’apprentissage est comparée aux critères existants d’estimation que sont le maximum de vraisemblance et l’estimation contrastive bruitée. Les expériences menées sur la tâches de traduction des séminaires TED Talks de l’anglais vers le français montrent la pertinence d’un cadre discriminant d’apprentissage, dont les performances restent toutefois très dépendantes du choix d’une stratégie d’initialisation idoine. Nous montrons qu’avec une initialisation judicieuse des gains significatifs en termes de scores BLEU peuvent être obtenus.

2014

This paper documents the systems developed by LIMSI for the IWSLT 2014 speech translation task (English→French). The main objective of this participation was twofold: adapting different components of the ASR baseline system to the peculiarities of TED talks and improving the machine translation quality on the automatic speech recognition output data. For the latter task, various techniques have been considered: punctuation and number normalization, adaptation to ASR errors, as well as the use of structured output layer neural network models for speech data.
In this paper we explore various adaptation techniques for continuous space translation models (CSTMs). We consider the following practical situation: given a large scale, state-of-the-art SMT system containing a CSTM, the task is to adapt the CSTM to a new domain using a (relatively) small in-domain parallel corpus. Our method relies on the definition of a new discriminative loss function for the CSTM that borrows from both the max-margin and pair-wise ranking approaches. In our experiments, the baseline out-of-domain SMT system is initially trained for the WMT News translation task, and the CSTM is to be adapted to the lecture translation task as defined by IWSLT evaluation campaign. Experimental results show that an improvement of 1.5 BLEU points can be achieved with the proposed adaptation method.

2013