Pum-Mo Ryu


2022

2014

2006

In this contribution we present a new methodology to compile large language resources for domain-specific taxonomy learning. We describe the necessary stages to deal with the rich morphology of an agglutinative language, i.e. Korean, and point out a second order machine learning algorithm to unveil term similarity from a given raw text corpus. The language resource compilation described is part of a fully automatic top-down approach to construct taxonomies, without involving the human efforts which are usually required.

2004