Proyag Pal


2025

Training state-of-the-art large language models requires vast amounts of clean and diverse textual data. However, building suitable multilingual datasets remains a challenge. In this work, we present HPLT v2, a collection of high-quality multilingual monolingual and parallel corpora, extending prior work of the HPLT project. The monolingual portion of the data contains 8T tokens covering 193 languages, while the parallel data contains 380M sentence pairs covering 51 languages. We document the entire data pipeline and release the code to reproduce it. We provide extensive analysis of the quality and characteristics of our data. Finally, we evaluate the performance of language models and machine translation systems trained on HPLT v2, demonstrating its value.

2024

Despite the fact that document-level machine translation has inherent advantages over sentence-level machine translation due to additional information available to a model from document context, most translation systems continue to operate at a sentence level. This is primarily due to the severe lack of publicly available large-scale parallel corpora at the document level. We release a large-scale open parallel corpus with document context extracted from ParaCrawl in five language pairs, along with code to compile document-level datasets for any language pair supported by ParaCrawl. We train context-aware models on these datasets and find improvements in terms of overall translation quality and targeted document-level phenomena. We also analyse how much long-range information is useful to model some of these discourse phenomena and find models are able to utilise context from several preceding sentences.

2023

We identify hard problems for neural machine translation models by analyzing progressively higher-scoring translations generated by letting models cheat to various degrees. If a system cheats and still gets something wrong, that suggests it is a hard problem. We experiment with two forms of cheating: providing the model a compressed representation of the target as an additional input, and fine-tuning on the test set. Contrary to popular belief, we find that the most frequent tokens are not necessarily the most accurately translated due to these often being function words and punctuation that can be used more flexibly in translation, or content words which can easily be paraphrased. We systematically analyze system outputs to identify categories of tokens which are particularly hard for the model to translate, and find that this includes certain types of named entities, subordinating conjunctions, and unknown and foreign words. We also encounter a phenomenon where words, often names, which were not infrequent in the training data are still repeatedly mistranslated by the models — we dub this the Fleetwood Mac problem.
This paper reports on the shared tasks organized by the 20th IWSLT Conference. The shared tasks address 9 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, multilingual, dialect and low-resource speech translation, and formality control. The shared tasks attracted a total of 38 submissions by 31 teams. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.

2022

This paper describes a method to quantify the amount of information H(t|s) added by the target sentence t that is not present in the source s in a neural machine translation system. We do this by providing the model the target sentence in a highly compressed form (a “cheat code”), and exploring the effect of the size of the cheat code. We find that the model is able to capture extra information from just a single float representation of the target and nearly reproduces the target with two 32-bit floats per target token.

2021

We describe the University of Edinburgh’s BengaliHindi constrained systems submitted to the WMT21 News Translation task. We submitted ensembles of Transformer models built with large-scale back-translation and fine-tuned on subsets of training data retrieved based on similarity to the target domain.
Search
Co-authors
Fix author