Ping-Che Yang

Also published as: Ping-che Yang


2018

This paper reports how we build a Chinese Grammatical Error Diagnosis system in the NLPTEA-2018 CGED shared task. In 2018, we sent three runs with three different approaches. The first one is a pattern-based approach by frequent error pattern matching. The second one is a sequential labelling approach by conditional random fields (CRF). The third one is a rewriting approach by sequence to sequence (seq2seq) model. The three approaches have different properties that aim to optimize different performance metrics and the formal run results show the differences as we expected.

2016

This paper describe the CYUT-III system on grammar error detection in the 2016 NLP-TEA Chinese Grammar Error Detection shared task CGED. In this task a system has to detect four types of errors, in-cluding redundant word error, missing word error, word selection error and word ordering error. Based on the conditional random fields (CRF) model, our system is a linear tagger that can detect the errors in learners’ essays. Since the system performance depends on the features heavily, in this paper, we are going to report how to integrate the collocation feature into the CRF model. Our system presents the best detection accuracy and Identification accuracy on the TOCFL dataset, which is in traditional Chi-nese. The same system also works well on the simplified Chinese HSK dataset.

2015

2014

2012

2011

2010