Pierre Isabelle


2018

2017

Neural machine translation represents an exciting leap forward in translation quality. But what longstanding weaknesses does it resolve, and which remain? We address these questions with a challenge set approach to translation evaluation and error analysis. A challenge set consists of a small set of sentences, each hand-designed to probe a system’s capacity to bridge a particular structural divergence between languages. To exemplify this approach, we present an English-French challenge set, and use it to analyze phrase-based and neural systems. The resulting analysis provides not only a more fine-grained picture of the strengths of neural systems, but also insight into which linguistic phenomena remain out of reach.

2015

2012

2011

2010

Machine Translation traditionally treats documents as sets of independent sentences. In many genres, however, documents are highly structured, and their structure contains information that can be used to improve translation quality. We present a preliminary approach to document translation that uses structural features to modify the behaviour of a language model, at sentence-level granularity. To our knowledge, this is the first attempt to incorporate structural information into statistical MT. In experiments on structured English/French documents from the Hansard corpus, we demonstrate small but statistically significant improvements.

2009

2007

2006

2003

2002

1998

1996

1994

1993

1992

1990

1989

1988

1986

1985

1984