Peter Dirix


2022

UniMorph 4.0: Universal Morphology
Khuyagbaatar Batsuren | Omer Goldman | Salam Khalifa | Nizar Habash | Witold Kieraś | Gábor Bella | Brian Leonard | Garrett Nicolai | Kyle Gorman | Yustinus Ghanggo Ate | Maria Ryskina | Sabrina Mielke | Elena Budianskaya | Charbel El-Khaissi | Tiago Pimentel | Michael Gasser | William Abbott Lane | Mohit Raj | Matt Coler | Jaime Rafael Montoya Samame | Delio Siticonatzi Camaiteri | Esaú Zumaeta Rojas | Didier López Francis | Arturo Oncevay | Juan López Bautista | Gema Celeste Silva Villegas | Lucas Torroba Hennigen | Adam Ek | David Guriel | Peter Dirix | Jean-Philippe Bernardy | Andrey Scherbakov | Aziyana Bayyr-ool | Antonios Anastasopoulos | Roberto Zariquiey | Karina Sheifer | Sofya Ganieva | Hilaria Cruz | Ritván Karahóǧa | Stella Markantonatou | George Pavlidis | Matvey Plugaryov | Elena Klyachko | Ali Salehi | Candy Angulo | Jatayu Baxi | Andrew Krizhanovsky | Natalia Krizhanovskaya | Elizabeth Salesky | Clara Vania | Sardana Ivanova | Jennifer White | Rowan Hall Maudslay | Josef Valvoda | Ran Zmigrod | Paula Czarnowska | Irene Nikkarinen | Aelita Salchak | Brijesh Bhatt | Christopher Straughn | Zoey Liu | Jonathan North Washington | Yuval Pinter | Duygu Ataman | Marcin Wolinski | Totok Suhardijanto | Anna Yablonskaya | Niklas Stoehr | Hossep Dolatian | Zahroh Nuriah | Shyam Ratan | Francis M. Tyers | Edoardo M. Ponti | Grant Aiton | Aryaman Arora | Richard J. Hatcher | Ritesh Kumar | Jeremiah Young | Daria Rodionova | Anastasia Yemelina | Taras Andrushko | Igor Marchenko | Polina Mashkovtseva | Alexandra Serova | Emily Prud’hommeaux | Maria Nepomniashchaya | Fausto Giunchiglia | Eleanor Chodroff | Mans Hulden | Miikka Silfverberg | Arya D. McCarthy | David Yarowsky | Ryan Cotterell | Reut Tsarfaty | Ekaterina Vylomova
Proceedings of the Thirteenth Language Resources and Evaluation Conference
The Universal Morphology (UniMorph) project is a collaborative effort providing broad-coverage instantiated normalized morphological inflection tables for hundreds of diverse world languages. The project comprises two major thrusts: a language-independent feature schema for rich morphological annotation, and a type-level resource of annotated data in diverse languages realizing that schema. This paper presents the expansions and improvements on several fronts that were made in the last couple of years (since McCarthy et al. (2020)). Collaborative efforts by numerous linguists have added 66 new languages, including 24 endangered languages. We have implemented several improvements to the extraction pipeline to tackle some issues, e.g., missing gender and macrons information. We have amended the schema to use a hierarchical structure that is needed for morphological phenomena like multiple-argument agreement and case stacking, while adding some missing morphological features to make the schema more inclusive. In light of the last UniMorph release, we also augmented the database with morpheme segmentation for 16 languages. Lastly, this new release makes a push towards inclusion of derivational morphology in UniMorph by enriching the data and annotation schema with instances representing derivational processes from MorphyNet.

2017

2016

Compared to well-resourced languages such as English and Dutch, natural language processing (NLP) tools for Afrikaans are still not abundant. In the context of the AfriBooms project, KU Leuven and the North-West University collaborated to develop a first, small treebank, a dependency parser, and an easy to use online linguistic search engine for Afrikaans for use by researchers and students in the humanities and social sciences. The search tool is based on a similar development for Dutch, i.e. GrETEL, a user-friendly search engine which allows users to query a treebank by means of a natural language example instead of a formal search instruction.

2013

2008

In this paper we describe the METIS-II system and its evaluation on each of the language pairs: Dutch, German, Greek, and Spanish to English. The METIS-II system envisaged developing a data-driven approach in which no parallel corpus is required, and in which no full parser or extensive rule sets are needed. We describe evalution on a development test set and on a test set coming from Europarl, and compare our results with SYSTRAN. We also provide some further analysis, researching the impact of the number and source of the reference translations and analysing the results according to test text type. The results are expectably lower for the METIS system, but not at an unatainable distance from a mature system like SYSTRAN.

2007

2005

The METIS-II project is an example-based machine translation system, making use of minimal resources and tools for both source and target language, making use of a target-language (TL) corpus, but not of any parallel corpora. In the current paper, we discuss the view of our team on the general philosophy and outline of the METIS-II system.
For the METIS-II project (IST, start: 10-2004 – end: 09-2007) we are working on an example-based machine translation system, making use of minimal resources and tools for both source and target language, i.e. making use of a target language corpus, but not of any parallel corpora. In the current paper, we present the results of the first experiments with our approach (CCL) within the METIS consortium : the translation of noun phrases from Dutch to English, using the British National Corpus as a target language corpus. Future research is planned along similar lines for the sentence as is presented here for the noun phrase.
Search
Co-authors
Fix author