Oswald Lanz


2010

There is by now widespread agreement that the most realistic way to construct the large-scale commonsense knowledge repositories required by natural language and artificial intelligence applications is by letting machines learn such knowledge from large quantities of data, like humans do. A lot of attention has consequently been paid to the development of increasingly sophisticated machine learning algorithms for knowledge extraction. However, the nature of the input that humans are exposed to while learning commonsense knowledge has received much less attention. The BabyExp project is collecting very dense audio and video recordings of the first 3 years of life of a baby. The corpus constructed in this way will be transcribed with automated techniques and made available to the research community. Moreover, techniques to extract commonsense conceptual knowledge incrementally from these multimodal data are also being explored within the project. The current paper describes BabyExp in general, and presents pilot studies on the feasibility of the automated audio and video transcriptions.