Omar Mokhtar


2025

Table Question Answering (TQA) involves extracting answers from structured data using natural language queries, a challenging task due to diverse table formats and complex reasoning. This work develops a TQA system using the DataBench dataset, leveraging large language models (LLMs) to generate Python code in a zero-shot manner. Our approach is highly generic, relying on a structured Chain-of-Thought framework to improve reasoning and data interpretation. Experimental results demonstrate that our method achieves high accuracy and efficiency, making it a flexible and effective solution for real-world tabular question answering.