Omar Elnashar


2025

The linguistic inclusivity of Large Language Models (LLMs) such as ChatGPT, Gemni, JAIS, and AceGPT has not been sufficiently explored, particularly in their handling of low-resource languages like Arabic compared to English. While these models have shown impressive performance across various tasks, their effectiveness in Arabic remains under-examined. Punctuation, critical for sentence structure and comprehension in tasks like speech analysis, synthesis, and machine translation, requires precise prediction. This paper assesses seven LLMs: GPT4-o, Gemni1.5, JAIS, AceGPT, SILMA, ALLaM, and CommandR+ for Arabic punctuation prediction. Additionally, the performance of fine-tuned AraBERT is compared with these models in zero-shot and few-shot settings using a proposed Arabic punctuation prediction corpus of 10,044 sentences. The experiments demonstrate that while AraBERT performs well for specific punctuation marks, LLMs show significant promise in zero-shot learning, with further improvements in few-shot scenarios. These findings highlight the potential of LLMs to enhance the automation and accuracy of Arabic text processing.