Nir Sweed


2025

Innovators often exhibit cognitive fixation on existing solutions or nascent ideas, hindering the exploration of novel alternatives. This paper introduces a methodology for constructing Functional Concept Graphs (FCGs), interconnected representations of functional elements that support abstraction, problem reframing, and analogical inspiration. Our approach yields large-scale, high-quality FCGs with explicit abstraction relations, overcoming limitations of prior work. We further present MUSE, an algorithm leveraging FCGs to generate creative inspirations for a given problem. We demonstrate our method by computing an FCG on 500K patents, which we release for further research. We introduced MUSE, a novel engine to find unexpected solutions to problems. This engine consists of the inspiration graph, whose problem and solution nodes were extracted from 500K patent descriptions. For a given problem, MUSE aims to enhance users’ creative problem solving by providing them with inspirations sampled from the inspiration graph. A user study indicates that participants exposed to MUSE’s inspirations generated more creative ideas, both in terms of absolute number (up to 19% increase over participants not given inspirations) and ratio (75%, compared to 49% for no inspirations).

2021

A snowclone is a customizable phrasal template that can be realized in multiple, instantly recognized variants. For example, “* is the new *" (Orange is the new black, 40 is the new 30). Snowclones are extensively used in social media. In this paper, we study snowclones originating from pop-culture quotes; our goal is to automatically detect cultural references in text. We introduce a new, publicly available data set of pop-culture quotes and their corresponding snowclone usages and train models on them. We publish code for Catchphrase, an internet browser plugin to automatically detect and mark references in real-time, and examine its performance via a user study. Aside from assisting people to better comprehend cultural references, we hope that detecting snowclones can complement work on paraphrasing and help tackling long-standing questions in social science about the dynamics of information propagation.