Ning Liu

Papers on this page may belong to the following people: Ning Liu, Ning Liu


2025

Text embedding models are essential for various natural language processing tasks, enabling the effective encoding of semantic information into dense vector representations. These models are typically optimized using triplets of (query, positive, negative) data pairs for contrastive learning, where the negative samples play a critical role in enhancing the model’s ability to discern subtle semantic distinctions. In this work, we introduce a **M**ulti-**G**ranularity **H**ard-negative (MGH) synthesis framework that leverages large language models (LLMs) to generate diverse negative samples with varying levels of similarity with the query. This approach facilitates a coarse-to-fine curriculum learning strategy during supervised training, allowing the embedding model to progressively learn more nuanced semantic representations. Meanwhile, we propose an **A**nchor **T**oken **A**ware (ATA) pooling method that assigns higher weights to anchor tokens based on aggregation patterns observed in LLMs, improving text embedding accuracy without increasing model complexity. Comprehensive experiments on the MTEB benchmark demonstrate that our methods achieve state-of-the-art performance, surpassing existing synthesis strategies both with synthetic data and when combined with public retrieval datasets.

2022

The IMPRESSIONS section of a radiology report about an imaging study is a summary of the radiologist’s reasoning and conclusions, and it also aids the referring physician in confirming or excluding certain diagnoses. A cascade of tasks are required to automatically generate an abstractive summary of the typical information-rich radiology report. These tasks include acquisition of salient content from the report and generation of a concise, easily consumable IMPRESSIONS section. Prior research on radiology report summarization has focused on single-step end-to-end models – which subsume the task of salient content acquisition. To fully explore the cascade structure and explainability of radiology report summarization, we introduce two innovations. First, we design a two-step approach: extractive summarization followed by abstractive summarization. Second, we additionally break down the extractive part into two independent tasks: extraction of salient (1) sentences and (2) keywords. Experiments on English radiology reports from two clinical sites show our novel approach leads to a more precise summary compared to single-step and to two-step-with-single-extractive-process baselines with an overall improvement in F1 score of 3-4%.