Nancy Girdhar


2023

Les modèles de langage de grande taille (LLM) sont exploités depuis plusieurs années maintenant, obtenant des performances de pointe dans la reconnaissance d’entités à partir de documents modernes. Depuis quelques mois, l’agent conversationnel ChatGPT a suscité beaucoup d’intérêt auprès de la communauté scientifique et du grand public en raison de sa capacité à générer des réponses plausibles. Dans cet article, nous explorons cette compétence à travers la tâche de reconnaissance et de classification d’entités nommées (NERC) dans des sources primaires (des journaux historiques et des commentaires classiques) d’une manière zero-shot et en la comparant avec les systèmes de pointe basés sur des modèles de langage. Nos résultats indiquent plusieurs lacunes dans l’identification des entités dans le texte historique, qui concernant la cohérence des guidelines d’annotation des entités, la complexité des entités et du changement de code et la spécificité du prompt. De plus, comme prévu, l’inaccessibilité des archives historiques a également un impact sur les performances de ChatGPT.
This paper summarizes the participation of the L3i laboratory of the University of La Rochelle in the SemEval-2023 Task 2, Multilingual Complex Named Entity Recognition (MultiCoNER II). Similar to MultiCoNER I, the task seeks to develop methods to detect semantic ambiguous and complex entities in short and low-context settings. However, MultiCoNER II adds a fine-grained entity taxonomy with over 30 entity types and corrupted data on the test partitions. We approach these complications following prompt-based learning as (1) a ranking problem using a seq2seq framework, and (2) an extractive question-answering task. Our findings show that even if prompting techniques have a similar recall to fine-tuned hierarchical language model-based encoder methods, precision tends to be more affected.