Nalin Gupta


2024

We investigate the problem of synthesizing relevant visual imagery from generic long-form text, leveraging Large Language Models (LLMs) and Text-to-Image Models (TIMs). Current Text-to-Image models require short prompts that describe the image content and style explicitly. Unlike image prompts, generation of images from general long-form text requires the image synthesis system to derive the visual content and style elements from the text. In this paper, we study zero-shot prompting and supervised fine-tuning approaches that use LLMs and TIMs jointly for synthesizing images. We present an empirical study on generating images for Wikipedia articles covering a broad spectrum of topic and image styles. We compare these systems using a suite of metrics, including a novel metric specifically designed to evaluate the semantic correctness of generated images. Our study offers a preliminary understanding of existing models’ strengths and limitation for the task of image generation from long-form text, and sets up an evaluation framework and establishes baselines for future research.

2022

Multi-modality support has become an integral part of creating a seamless user experience with modern voice assistants with smart displays. Users refer to images, video thumbnails, or the accompanying text descriptions on the screen through voice communication with AI powered devices. This raises the need to either augment existing commercial voice only dialogue systems with state-of-the-art multimodal components, or to introduce entirely new architectures; where the latter can lead to costly system revamps. To support the emerging visual navigation and visual product selection use cases, we propose to augment commercially deployed voice-only dialogue systems with additional multi-modal components. In this work, we present a novel yet pragmatic approach to expand an existing dialogue-based context carryover system (Chen et al., 2019a) in a voice assistant with state-of-the-art multimodal components to facilitate quick delivery of visual modality support with minimum changes. We demonstrate a 35% accuracy improvement over the existing system on an in-house multi-modal visual navigation data set.