Murat Apishev


2025

Recent progress in Natural Language Processing (NLP) has driven the creation of Large Language Models (LLMs) capable of tackling a vast range of tasks. A critical property of these models is their ability to handle large documents and process long token sequences, which has fostered the need for a robust evaluation methodology for long-text scenarios. To meet this requirement in the context of the Russian language, we present our benchmark consisting of 18 datasets designed to assess LLM performance in tasks such as information retrieval, knowledge extraction, machine reading, question answering, and reasoning. These datasets are categorized into four levels of complexity, enabling model evaluation across context lengths up to 128k tokens. To facilitate further research, we provide open-source datasets, a codebase, and a public leaderboard associated with the benchmark.

2021

In this paper we present a new Massive Open Online Course on Natural Language Processing, targeted at non-English speaking students. The course lasts 12 weeks, every week consists of lectures, practical sessions and quiz assigments. Three weeks out of 12 are followed by Kaggle-style coding assigments. Our course intents to serve multiple purposes: (i) familirize students with the core concepts and methods in NLP, such as language modelling or word or sentence representations, (ii) show that recent advances, including pre-trained Transformer-based models, are build upon these concepts; (iii) to introduce architectures for most most demanded real-life applications, (iii) to develop practical skills to process texts in multiple languages. The course was prepared and recorded during 2020 and so far have received positive feedback.