Mitch Marcus

Also published as: Mitchell Marcus, Mitchell P. Marcus, M. Marcus


2024

In this paper, we present our exploration of annotating Chinese word senses using English WordNet synsets, with examples extracted from OntoNotes Chinese sense inventories. Given a target word along with the example that contains it, the annotators select a WordNet synset that best describes the meaning of the target word in the context. The result demonstrates an inter-annotator agreement of 38% between two annotators. We delve into the instances of disagreement by comparing the two annotated synsets, including their positions within the WordNet hierarchy. The examination reveals intriguing patterns among closely related synsets, shedding light on similar concepts represented within the WordNet structure. The data offers as an indirect linking of Chinese word senses defined in OntoNotes Chinese sense inventories to WordNet sysnets, and thus promotes the value of the OntoNotes corpus. Compared to a direct linking of Chinese word senses to WordNet synsets, the example-based annotation has the merit of not being affected by inaccurate sense definitions and thus offers a new way of mapping WordNets of different languages. At the same time, the annotated data also serves as a valuable linguistic resource for exploring potential lexical differences between English and Chinese, with potential contributions to the broader understanding of cross-linguistic semantic mapping

2020

This paper describes a language-independent model for fully unsupervised morphological analysis that exploits a universal framework leveraging morphological typology. By modeling morphological processes including suffixation, prefixation, infixation, and full and partial reduplication with constrained stem change rules, our system effectively constrains the search space and offers a wide coverage in terms of morphological typology. The system is tested on nine typologically and genetically diverse languages, and shows superior performance over leading systems. We also investigate the effect of an oracle that provides only a handful of bits per language to signal morphological type.
This paper describes a new morphology resource created by Linguistic Data Consortium and the University of Pennsylvania for the DARPA LORELEI Program. The data consists of approximately 2000 tokens annotated for morphological segmentation in each of 9 low resource languages, along with root information for 7 of the languages. The languages annotated show a broad diversity of typological features. A minimal annotation scheme for segmentation was developed such that it could capture the patterns of a wide range of languages and also be performed reliably by non-linguist annotators. The basic annotation guidelines were designed to be language-independent, but included language-specific morphological paradigms and other specifications. The resulting annotated corpus is designed to support and stimulate the development of unsupervised morphological segmenters and analyzers by providing a gold standard for their evaluation on a more typologically diverse set of languages than has previously been available. By providing root annotation, this corpus is also a step toward supporting research in identifying richer morphological structures than simple morpheme boundaries.

2018

This paper describes an unsupervised model for morphological segmentation that exploits the notion of paradigms, which are sets of morphological categories (e.g., suffixes) that can be applied to a homogeneous set of words (e.g., nouns or verbs). Our algorithm identifies statistically reliable paradigms from the morphological segmentation result of a probabilistic model, and chooses reliable suffixes from them. The new suffixes can be fed back iteratively to improve the accuracy of the probabilistic model. Finally, the unreliable paradigms are subjected to pruning to eliminate unreliable morphological relations between words. The paradigm-based algorithm significantly improves segmentation accuracy. Our method achieves start-of-the-art results on experiments using the Morpho-Challenge data, including English, Turkish, and Finnish.

2017

2015

2013

Dependency parsing algorithms capable of producing the types of crossing dependencies seen in natural language sentences have traditionally been orders of magnitude slower than algorithms for projective trees. For 95.8–99.8% of dependency parses in various natural language treebanks, whenever an edge is crossed, the edges that cross it all have a common vertex. The optimal dependency tree that satisfies this 1-Endpoint-Crossing property can be found with an O(n4) parsing algorithm that recursively combines forests over intervals with one exterior point. 1-Endpoint-Crossing trees also have natural connections to linguistics and another class of graphs that has been studied in NLP.

2012

2011

2009

2007

2006

2000

1998

1997

1995

1994

1993

1992

1991

This paper describes a natural language parsing algorithm for unrestricted text which uses a probability-based scoring function to select the “best” parse of a sentence. The parser, Pearl, is a time-asynchronous bottom-up chart parser with Earley-type top-down prediction which pursues the highest-scoring theory in the chart, where the score of a theory represents the extent to which the context of the sentence predicts that interpretation. This parser differs from previous attempts at stochastic parsers in that it uses a richer form of conditional probabilities based on context to predict likelihood. Pearl also provides a framework for incorporating the results of previous work in part-of-speech assignment, unknown word models, and other probabilistic models of linguistic features into one parsing tool, interleaving these techniques instead of using the traditional pipeline architecture. In preliminary tests, Pearl has been successful at resolving part-of-speech and word (in speech processing) ambiguity, determining categories for unknown words, and selecting correct parses first using a very loosely fitting covering grammar.

1990

1989

1987

1983

1982

1978

1975