Michael Poprat


2008

We provide an overview of corpus building efforts at the Jena University Language & Information Engineering (JULIE) Lab which are focused on life science documents. Special emphasis is laid on semantic annotations in terms of a large amount of biomedical named entities (almost 100 entity types), semantic relations, as well as discourse phenomena, reference relations in particular.

2007

2006

We describe an experiment on collecting large language and topic specific corpora automatically by using a focused Web crawler. Our crawler combines efficient crawling techniques with a common text classification tool. Given a sample corpus of medical documents, we automatically extract query phrases and then acquire seed URLs with a standard search engine. Starting from these seed URLs, the crawler builds a new large collection consisting only of documents that satisfy both the language and the topic model. The manual analysis of acquired English and German medicine corpora reveals the high accuracy of the crawler. However, there are significant differences between both languages.