Michael Henry Tessler


2025

Modelling human variation in rating tasks is crucial for enabling AI systems for personalization, pluralistic model alignment, and computational social science. We propose representing individuals using value profiles – natural language descriptions of underlying values compressed from in-context demonstrations – along with a steerable decoder model to estimate ratings conditioned on a value profile or other rater information. To measure the predictive information in rater representations, we introduce an information-theoretic methodology. We find that demonstrations contain the most information, followed by value profiles and then demographics. However, value profiles offer advantages in terms of scrutability, interpretability, and steerability due to their compressed natural language format. Value profiles effectively compress the useful information from demonstrations (70% information preservation). Furthermore, clustering value profiles to identify similarly behaving individuals better explains rater variation than the most predictive demographic groupings. Going beyond test set performance, we show that the decoder models interpretably change ratings according to semantic profile differences, are well-calibrated, and can help explain instance-level disagreement by simulating an annotator population. These results demonstrate that value profiles offer novel, predictive ways to describe individual variation beyond demographics or group information.

2022

Though approximately 50% of medical school graduates today are women, female physicians tend to be underrepresented in senior positions, make less money than their male counterparts and receive fewer promotions. There is a growing body of literature demonstrating gender bias in various forms of evaluation in medicine, but this work was mainly conducted by looking for specific words using fixed dictionaries such as LIWC and focused on global assessments of performance such as recommendation letters. We use a dataset of written and quantitative assessments of medical student performance on individual shifts of work, collected across multiple institutions, to investigate the extent to which gender bias exists in a day-to-day context for medical students. We investigate differences in the narrative comments given to male and female students by both male or female faculty assessors, using a fine-tuned BERT model. This allows us to examine whether groups are written about in systematically different ways, without relying on hand-crafted wordlists or topic models. We compare these results to results from the traditional LIWC method and find that, although we find no evidence of group-level gender bias in this dataset, terms related to family and children are used more in feedback given to women.