Michael Andrew Orme


2024

This paper concerns the pressing need to understand and manage inappropriate language within the evolving human-robot interaction (HRI) landscape. As intelligent systems and robots transition from controlled laboratory settings to everyday households, the demand for polite and culturally sensitive conversational abilities becomes paramount, especially for younger individuals. This study explores data cleaning methods, focussing on rudeness and contextual similarity, to identify and mitigate inappropriate language in real-time interactions. State-of-the-art natural language models are also evaluated for their proficiency in discerning rudeness. This multifaceted investigation highlights the challenges of handling inappropriate language, including its tendency to hide within idiomatic expressions and its context-dependent nature. This study will further contribute to the future development of AI systems capable of engaging in intelligent conversations and upholding the values of courtesy and respect across diverse cultural and generational boundaries.