Meladel Mistica


2025

We present a joint multitask model for the Uni-Dive 2025 Morpho-Syntactic Parsing shared task, where systems predict both morphological and syntactic analyses following novel UD annotation scheme. Our system uses a shared XLM-RoBERTa encoder with three specialized decoders for content word identification, dependency parsing, and morphosyntactic feature prediction. Our model achieves the best overall performance on the shared task’s leaderboard covering nine typologically diverse languages, with an average MSLAS score of 78.7%, LAS of 80.1%, and Feats F1 of 90.3%. Our ablation studies show that matching the task’s gold tokenization and content word identification are crucial to model performance. Error analysis reveals that our model struggles with core grammatical cases (particularly Nom–Acc) and nominal features across languages.

2024

This paper explores the task of automatic prediction of text spans in a legal problem description that support a legal area label. We use a corpus of problem descriptions written by laypeople in English that is annotated by practising lawyers. Inherent subjectivity exists in our task because legal area categorisation is a complex task, and lawyers often have different views on a problem. Experiments show that training on majority-voted spans outperforms training on disaggregated ones.

2021

Free legal assistance is critically under-resourced, and many of those who seek legal help have their needs unmet. A major bottleneck in the provision of free legal assistance to those most in need is the determination of the precise nature of the legal problem. This paper describes a collaboration with a major provider of free legal assistance, and the deployment of natural language processing models to assign area-of-law categories to real-world requests for legal assistance. In particular, we focus on an investigation of models to generate efficiencies in the triage process, but also the risks associated with naive use of model predictions, including fairness across different user demographics.
We introduce the new task of domain name dispute resolution (DNDR), that predicts the outcome of a process for resolving disputes about legal entitlement to a domain name. TheICANN UDRP establishes a mandatory arbitration process for a dispute between a trade-mark owner and a domain name registrant pertaining to a generic Top-Level Domain (gTLD) name (one ending in .COM, .ORG, .NET, etc). The nature of the problem leads to a very skewed data set, which stems from being able to register a domain name with extreme ease, very little expense, and no need to prove an entitlement to it. In this paper, we describe thetask and associated data set. We also present benchmarking results based on a range of mod-els, which show that simple baselines are in general difficult to beat due to the skewed data distribution, but in the specific case of the respondent having submitted a response, a fine-tuned BERT model offers considerable improvements over a majority-class model
While pretrained language models (LMs) have driven impressive gains over morpho-syntactic and semantic tasks, their ability to model discourse and pragmatic phenomena is less clear. As a step towards a better understanding of their discourse modeling capabilities, we propose a sentence intrusion detection task. We examine the performance of a broad range of pretrained LMs on this detection task for English. Lacking a dataset for the task, we introduce INSteD, a novel intruder sentence detection dataset, containing 170,000+ documents constructed from English Wikipedia and CNN news articles. Our experiments show that pretrained LMs perform impressively in in-domain evaluation, but experience a substantial drop in the cross-domain setting, indicating limited generalization capacity. Further results over a novel linguistic probe dataset show that there is substantial room for improvement, especially in the cross- domain setting.

2020

‘Common Law’ judicial systems follow the doctrine of precedent, which means the legal principles articulated in court judgements are binding in subsequent cases in lower courts. For this reason, lawyers must search prior judgements for the legal principles that are relevant to their case. The difficulty for those within the legal profession is that the information that they are looking for may be contained within a few paragraphs or sentences, but those few paragraphs may be buried within a hundred-page document. In this study, we create a schema based on the relevant information that legal professionals seek within judgements and perform text classification based on it, with the aim of not only assisting lawyers in researching cases, but eventually enabling large-scale analysis of legal judgements to find trends in court outcomes over time.

2019

2013

2011

2009

2008

2007