Matthias Eck


2023

Harmful content detection models tend to have higher false positive rates for content from marginalized groups. In the context of marginal abuse modeling on Twitter, such disproportionate penalization poses the risk of reduced visibility, where marginalized communities lose the opportunity to voice their opinion on the platform. Current approaches to algorithmic harm mitigation, and bias detection for NLP models are often very ad hoc and subject to human bias. We make two main contributions in this paper. First, we design a novel methodology, which provides a principled approach to detecting and measuring the severity of potential harms associated with a text-based model. Second, we apply our methodology to audit Twitter’s English marginal abuse model, which is used for removing amplification eligibility of marginally abusive content. Without utilizing demographic labels or dialect classifiers, we are still able to detect and measure the severity of issues related to the over-penalization of the speech of marginalized communities, such as the use of reclaimed speech, counterspeech, and identity related terms. In order to mitigate the associated harms, we experiment with adding additional true negative examples and find that doing so provides improvements to our fairness metrics without large degradations in model performance.

2014

We introduce two methods to collect additional training data for statistical machine translation systems from public social network content. The first method identifies multilingual content where the author self-translated their own post to reach additional friends, fans or customers. Once identified, we can split the post in the language segments and extract translation pairs from this content. The second methods considers web links (URLs) that users add as part of their post to point the reader to a video, article or website. If the same URL is shared from different language users, there is a chance they might give the same comment in their respective language. We use a support vector machine (SVM) as a classifier to identify true translations from all candidate pairs. We collected additional translation pairs using both methods for the language pairs Spanish-English and Portuguese-English. Testing the collected data as additional training data for statistical machine translations on in-domain test sets resulted in very significant improvements of up to 5 BLEU.

2010

2009

2008

A new approach to handle unknown words in machine translation is presented. The basic idea is to find definitions for the unknown words on the source language side and translate those definitions instead. Only monolingual resources are required, which generally offer a broader coverage than bilingual resources and are available for a large number of languages. In order to use this in a machine translation system definitions are extracted automatically from online dictionaries and encyclopedias. The translated definition is then inserted and clearly marked in the original hypothesis. This is shown to lead to significant improvements in (subjective) translation quality.

2007

2006

2005

Statistical machine translation relies heavily on the available training data. However, in some cases, it is necessary to limit the amount of training data that can be created for or actually used by the systems. To solve that problem, we introduce a weighting scheme that tries to select more informative sentences first. This selection is based on the previously unseen n-grams the sentences contain, and it allows us to sort the sentences according to their estimated importance. After sorting, we can construct smaller training corpora, and we are able to demonstrate that systems trained on much less training data show a very competitive performance compared to baseline systems using all available training data.

2004