Mary Harper

Also published as: Mary P. Harper, M. P. Harper


2014

2011

2010

2009

2007

2006

While both spoken and written language processing stand to benefit from parsing, the standard Parseval metrics (Black et al., 1991) and their canonical implementation (Sekine and Collins, 1997) are only useful for text. The Parseval metrics are undefined when the words input to the parser do not match the words in the gold standard parse tree exactly, and word errors are unavoidable with automatic speech recognition (ASR) systems. To fill this gap, we have developed a publicly available tool for scoring parses that implements a variety of metrics which can handle mismatches in words and segmentations, including: alignment-based bracket evaluation, alignment-based dependency evaluation, and a dependency evaluation that does not require alignment. We describe the different metrics, how to use the tool, and the outcome of an extensive set of experiments on the sensitivity.
There has been an increasing interest in utilizing a wide variety of knowledge sources in order to perform automatic tagging of speech events, such as sentence boundaries and dialogue acts. In addition to the word spoken, the prosodic content of the speech has been proved quite valuable in a variety of spoken language processing tasks such as sentence segmentation and tagging, disfluency detection, dialog act segmentation and tagging, and speaker recognition. In this paper, we report on an open source prosodic feature extraction tool based on Praat, with a description of the prosodic features and the implementation details, as well as a discussion of its extension capability. We also evaluate our tool on a sentence boundary detection task and report the system performance on the NIST RT04 CTS data.
We report on the success of a two-pass approach to annotating metadata, speech effects and syntactic structure in English conversational speech: separately annotating transcribed speech for structural metadata, or structural events, (fillers, speech repairs ( or edit dysfluencies) and SUs, or syntactic/semantic units) and for syntactic structure (treebanking constituent structure and shallow argument structure). The two annotations were then combined into a single representation. Certain alignment issues between the two types of annotation led to the discovery and correction of annotation errors in each, resulting in a more accurate and useful resource. The development of this corpus was motivated by the need to have both metadata and syntactic structure annotated in order to support synergistic work on speech parsing and structural event detection. Automatic detection of these speech phenomena would simultaneously improve parsing accuracy and provide a mechanism for cleaning up transcriptions for downstream text processing. Similarly, constraints imposed by text processing systems such as parsers can be used to help improve identification of disfluencies and sentence boundaries. This paper reports on our efforts to develop a linguistic resource providing both spoken metadata and syntactic structure information, and describes the resulting corpus of English conversational speech.

2005

2004

People, when processing human-to-human communication, utilize everything they can in order to understand that communication, including speech and information such as the time and location of an interlocutor's gesture and gaze. Speech and gesture are known to exhibit a synchronous relationship in human communication; however, the precise nature of that relationship requires further investigation. The construction of computer models of multimodal human communication would be enabled by the availability of multimodal communication corpora annotated with synchronized gesture and speech features. To investigate the temporal relationships of these knowledge sources, we have collected and are annotating several multimodal corpora with time-aligned features. Forced alignment between a speech file and its transcription is a crucial part of multimodal corpus production. This paper investigates a number of factors that may contribute to highly accurate forced alignments to support the rapid production of these multimodal corpora including the acoustic model, the match between the speech used for training the system and that to be force aligned, the amount of data used to train the ASR system, the availability of speaker adaptation, and the duration of alignment segments.

2002

2000

1999

1997

1994

1992

1990

1986