Mark Dras


2025

Alignment techniques have become central to ensuring that Large Language Models (LLMs) generate outputs consistent with human values. However, existing alignment paradigms often model an averaged or monolithic preference, failing to account for the diversity of perspectives across cultures, demographics, and communities. This limitation is particularly critical in health-related scenarios, where plurality is essential due to the influence of culture, religion, personal values, and conflicting opinions. Despite progress in pluralistic alignment, no prior work has focused on health, likely due to the unavailability of publicly available datasets. To address this gap, we introduce VITAL, a new benchmark dataset comprising 13.1K value-laden situations and 5.4K multiple-choice questions focused on health, designed to assess and benchmark pluralistic alignment methodologies. Through extensive evaluation of eight LLMs of varying sizes, we demonstrate that existing pluralistic alignment techniques fall short in effectively accommodating diverse healthcare beliefs, underscoring the need for tailored AI alignment in specific domains. This work highlights the limitations of current approaches and lays the groundwork for developing health-specific alignment solutions.
Deep learning models for language are vulnerable to adversarial examples. However, the perturbations introduced can sometimes seem odd or very noticeable to humans, which can make them less effective, a notion captured in some recent investigations as a property of '(non-)suspicion’. In this paper, we focus on three main types of perturbations that may raise suspicion: changes to named entities, inconsistent morphological inflections, and the use of non-English words. We define a notion of adversarial closeness and collect human annotations to construct two new datasets. We then use these datasets to investigate whether these kinds of perturbations have a disproportionate effect on human judgements. Following that, we propose new constraints to include in a constraint-based optimisation approach to adversarial text generation. Our human evaluation shows that these do improve the process by preventing the generation of especially odd or marked texts.
Large Vision-Language Models (LVLMs) unlock powerful multimodal reasoning but also expand the attack surface, particularly through adversarial inputs that conceal harmful goals in benign prompts. We propose SHIELD, a lightweight, model-agnostic preprocessing framework that couples fine-grained safety classification with category-specific guidance and explicit actions (Block, Reframe, and Forward). Unlike binary moderators, SHIELD composes tailored safety prompts that enforce nuanced refusals or safe redirections without retraining. Across five benchmarks and five representative LVLMs, SHIELD consistently lowers jailbreak and non-following rates while preserving utility. Our method is plug-and-play, incurs negligible overhead, and is easily extendable to new attack types—serving as a practical safety patch for both weakly and strongly aligned LVLMs.
Recent advancements in large language models (LLMs) have enabled their widespread use across diverse real-world applications. However, concerns remain about their tendency to encode and reproduce ideological biases along political and economic dimensions. In this paper, we employ a framework for probing and mitigating such biases in decoder-based LLMs through analysis of internal model representations. Grounded in the Political Compass Test (PCT), this method uses contrastive pairs to extract and compare hidden layer activations from models like Mistral and DeepSeek. We introduce a comprehensive activation extraction pipeline capable of layer-wise analysis across multiple ideological axes, revealing meaningful disparities linked to political framing. Our results show that decoder LLMs systematically encode representational bias across layers, which can be leveraged for effective steering vector-based mitigation. This work provides new insights into how political bias is encoded in LLMs and offers a principled approach to debiasing beyond surface-level output interventions.
Large Language Models (LLMs) exhibit strong performance across a wide range of NLP tasks, yet aligning their outputs with the principles of Helpfulness, Harmlessness, and Honesty (HHH) remains a persistent challenge. Existing methods often optimize for individual alignment dimensions in isolation, leading to trade-offs and inconsistent behavior. While Mixture-of-Experts (MoE) architectures offer modularity, they suffer from poorly calibrated routing, limiting their effectiveness in alignment tasks. We propose TrinityX, a modular alignment framework that incorporates a Mixture of Calibrated Experts (MoCaE) within the Transformer architecture. TrinityX leverages separately trained experts for each HHH dimension, integrating their outputs through a calibrated, task-adaptive routing mechanism that combines expert signals into a unified, alignment-aware representation. Extensive experiments on three standard alignment benchmarks—Alpaca (Helpfulness), BeaverTails (Harmlessness), and TruthfulQA (Honesty)—demonstrate that TrinityX outperforms strong baselines, achieving relative improvements of 32.5% in win rate, 33.9% in safety score, and 28.4% in truthfulness. In addition, TrinityX reduces memory usage and inference latency by over 40% compared to prior MoE-based approaches. Ablation studies highlight the importance of calibrated routing, and cross-model evaluations confirm TrinityX’s generalization across diverse LLM backbones. Ourcode is available at: https://github.com/gskgautam/TrinityX

2024

Recent studies have shown that distributed machine learning is vulnerable to gradient inversion attacks, where private training data can be reconstructed by analyzing the gradients of the models shared in training. Previous attacks established that such reconstructions are possible using gradients from all parameters in the entire models. However, we hypothesize that most of the involved modules, or even their sub-modules, are at risk of training data leakage, and we validate such vulnerabilities in various intermediate layers of language models. Our extensive experiments reveal that gradients from a single Transformer layer, or even a single linear component with 0.54% parameters, are susceptible to training data leakage. Additionally, we show that applying differential privacy on gradients during training offers limited protection against the novel vulnerability of data disclosure.
The democratization of pre-trained language models through open-source initiatives has rapidly advanced innovation and expanded access to cutting-edge technologies. However, this openness also brings significant security risks, including backdoor attacks, where hidden malicious behaviors are triggered by specific inputs, compromising natural language processing (NLP) system integrity and reliability. This paper suggests that merging a backdoored model with other homogeneous models can significantly remediate backdoor vulnerabilities even if such models are not entirely secure. In our experiments, we verify our hypothesis on various models (BERT-Base, RoBERTa-Large, Llama2-7B, and Mistral-7B) and datasets (SST-2, OLID, AG News, and QNLI). Compared to multiple advanced defensive approaches, our method offers an effective and efficient inference-stage defense against backdoor attacks on classification and instruction-tuned tasks without additional resources or specific knowledge. Our approach consistently outperforms recent advanced baselines, leading to an average of about 75% reduction in the attack success rate. Since model merging has been an established approach for improving model performance, the extra advantage it provides regarding defense can be seen as a cost-free bonus.

2023

2022

Abstractive summarization of medical dialogues presents a challenge for standard training approaches, given the paucity of suitable datasets. We explore the performance of state-of-the-art models with zero-shot and few-shot learning strategies and measure the impact of pretraining with general domain and dialogue-specific text on the summarization performance.
Although deep neural networks have achieved state-of-the-art performance in various machine learning tasks, adversarial examples, constructed by adding small non-random perturbations to correctly classified inputs, successfully fool highly expressive deep classifiers into incorrect predictions. Approaches to adversarial attacks in natural language tasks have boomed in the last five years using character-level, word-level, phrase-level, or sentence-level textual perturbations. While there is some work in NLP on defending against such attacks through proactive methods, like adversarial training, there is to our knowledge no effective general reactive approaches to defence via detection of textual adversarial examples such as is found in the image processing literature. In this paper, we propose two new reactive methods for NLP to fill this gap, which unlike the few limited application baselines from NLP are based entirely on distribution characteristics of learned representations”:” we adapt one from the image processing literature (Local Intrinsic Dimensionality (LID)), and propose a novel one (MultiDistance Representation Ensemble Method (MDRE)). Adapted LID and MDRE obtain state-of-the-art results on character-level, word-level, and phrase-level attacks on the IMDB dataset as well as on the later two with respect to the MultiNLI dataset. For future research, we publish our code .

2021

This paper focuses on Seq2Seq (S2S) constrained text generation where the text generator is constrained to mention specific words which are inputs to the encoder in the generated outputs. Pre-trained S2S models or a Copy Mechanism are trained to copy the surface tokens from encoders to decoders, but they cannot guarantee constraint satisfaction. Constrained decoding algorithms always produce hypotheses satisfying all constraints. However, they are computationally expensive and can lower the generated text quality. In this paper, we propose Mention Flags (MF), which traces whether lexical constraints are satisfied in the generated outputs in an S2S decoder. The MF models can be trained to generate tokens in a hypothesis until all constraints are satisfied, guaranteeing high constraint satisfaction. Our experiments on the Common Sense Generation task (CommonGen) (Lin et al., 2020), End2end Restaurant Dialog task (E2ENLG) (Duˇsek et al., 2020) and Novel Object Captioning task (nocaps) (Agrawal et al., 2019) show that the MF models maintain higher constraint satisfaction and text quality than the baseline models and other constrained decoding algorithms, achieving state-of-the-art performance on all three tasks. These results are achieved with a much lower run-time than constrained decoding algorithms. We also show that the MF models work well in the low-resource setting.

2020

Author obfuscation is the task of masking the author of a piece of text, with applications in privacy. Recent advances in deep neural networks have boosted author identification performance making author obfuscation more challenging. Existing approaches to author obfuscation are largely heuristic. Obfuscation can, however, be thought of as the construction of adversarial examples to attack author identification, suggesting that the deep learning architectures used for adversarial attacks could have application here. Current architectures are proposed to construct adversarial examples against classification-based models, which in author identification would exclude the high-performing similarity-based models employed when facing large number of authorial classes. In this paper, we propose the first deep learning architecture for constructing adversarial examples against similarity-based learners, and explore its application to author obfuscation. We analyse the output from both success in obfuscation and language acceptability, as well as comparing the performance with some common baselines, and showing promising results in finding a balance between safety and soundness of the perturbed texts.

2018

Ensemble methods using multiple classifiers have proven to be among the most successful approaches for the task of Native Language Identification (NLI), achieving the current state of the art. However, a systematic examination of ensemble methods for NLI has yet to be conducted. Additionally, deeper ensemble architectures such as classifier stacking have not been closely evaluated. We present a set of experiments using three ensemble-based models, testing each with multiple configurations and algorithms. This includes a rigorous application of meta-classification models for NLI, achieving state-of-the-art results on several large data sets, evaluated in both intra-corpus and cross-corpus modes.
We present an easy-to-use and fast toolkit, namely VnCoreNLP—a Java NLP annotation pipeline for Vietnamese. Our VnCoreNLP supports key natural language processing (NLP) tasks including word segmentation, part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing, and obtains state-of-the-art (SOTA) results for these tasks. We release VnCoreNLP to provide rich linguistic annotations to facilitate research work on Vietnamese NLP. Our VnCoreNLP is open-source and available at: https://github.com/vncorenlp/VnCoreNLP
Because obtaining training data is often the most difficult part of an NLP or ML project, we develop methods for predicting how much data is required to achieve a desired test accuracy by extrapolating results from models trained on a small pilot training dataset. We model how accuracy varies as a function of training size on subsets of the pilot data, and use that model to predict how much training data would be required to achieve the desired accuracy. We introduce a new performance extrapolation task to evaluate how well different extrapolations predict accuracy on larger training sets. We show that details of hyperparameter optimisation and the extrapolation models can have dramatic effects in a document classification task. We believe this is an important first step in developing methods for estimating the resources required to meet specific engineering performance targets.

2017

We present a novel neural network model that learns POS tagging and graph-based dependency parsing jointly. Our model uses bidirectional LSTMs to learn feature representations shared for both POS tagging and dependency parsing tasks, thus handling the feature-engineering problem. Our extensive experiments, on 19 languages from the Universal Dependencies project, show that our model outperforms the state-of-the-art neural network-based Stack-propagation model for joint POS tagging and transition-based dependency parsing, resulting in a new state of the art. Our code is open-source and available together with pre-trained models at: https://github.com/datquocnguyen/jPTDP
Most work on segmenting text does so on the basis of topic changes, but it can be of interest to segment by other, stylistically expressed characteristics such as change of authorship or native language. We propose a Bayesian unsupervised text segmentation approach to the latter. While baseline models achieve essentially random segmentation on our task, indicating its difficulty, a Bayesian model that incorporates appropriately compact language models and alternating asymmetric priors can achieve scores on the standard metrics around halfway to perfect segmentation.
We evaluate feature hashing for language identification (LID), a method not previously used for this task. Using a standard dataset, we first show that while feature performance is high, LID data is highly dimensional and mostly sparse (>99.5%) as it includes large vocabularies for many languages; memory requirements grow as languages are added. Next we apply hashing using various hash sizes, demonstrating that there is no performance loss with dimensionality reductions of up to 86%. We also show that using an ensemble of low-dimension hash-based classifiers further boosts performance. Feature hashing is highly useful for LID and holds great promise for future work in this area.

2016

This paper presents a number of experiments to model changes in a historical Portuguese corpus composed of literary texts for the purpose of temporal text classification. Algorithms were trained to classify texts with respect to their publication date taking into account lexical variation represented as word n-grams, and morphosyntactic variation represented by part-of-speech (POS) distribution. We report results of 99.8% accuracy using word unigram features with a Support Vector Machines classifier to predict the publication date of documents in time intervals of both one century and half a century. A feature analysis is performed to investigate the most informative features for this task and how they are linked to language change.

2015

2014

2013

2012

Language resources are essential for linguistic research and the development of NLP applications. Low-density languages, such as Irish, therefore lack significant research in this area. This paper describes the early stages in the development of new language resources for Irish ― namely the first Irish dependency treebank and the first Irish statistical dependency parser. We present the methodology behind building our new treebank and the steps we take to leverage upon the few existing resources. We discuss language-specific choices made when defining our dependency labelling scheme, and describe interesting Irish language characteristics such as prepositional attachment, copula, and clefting. We manually develop a small treebank of 300 sentences based on an existing POS-tagged corpus and report an inter-annotator agreement of 0.7902. We train MaltParser to achieve preliminary parsing results for Irish and describe a bootstrapping approach for further stages of development.

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2000

1999

1997

Search
Fix author