Marie Meteer

Also published as: Marie W. Meteer


2019

There has been a significant investment in dialog systems (tools and runtime) for building conversational systems by major companies including Google, IBM, Microsoft, and Amazon. The question remains whether these tools are up to the task of building conversational, task-oriented dialog applications at the enterprise level. In our company, we are exploring and comparing several toolsets in an effort to determine their strengths and weaknesses in meeting our goals for dialog system development: accuracy, time to market, ease of replicating and extending applications, and efficiency and ease of use by developers. In this paper, we provide both quantitative and qualitative results in three main areas: natural language understanding, dialog, and text generation. While existing toolsets were all incomplete, we hope this paper will provide a roadmap of where they need to go to meet the goal of building effective dialog systems.

2018

Readmission after discharge from a hospital is disruptive and costly, regardless of the reason. However, it can be particularly problematic for psychiatric patients, so predicting which patients may be readmitted is critically important but also very difficult. Clinical narratives in psychiatric electronic health records (EHRs) span a wide range of topics and vocabulary; therefore, a psychiatric readmission prediction model must begin with a robust and interpretable topic extraction component. We created a data pipeline for using document vector similarity metrics to perform topic extraction on psychiatric EHR data in service of our long-term goal of creating a readmission risk classifier. We show initial results for our topic extraction model and identify additional features we will be incorporating in the future.

2012

2000

1996

1994

1993

1992

1991

1990

1989

1988