Margaret Mitchell


2025

Large Language Models (LLMs) reproduce and exacerbate the social biases present in their training data, and resources to quantify this issue are limited. While research has attempted to identify and mitigate such biases, most efforts have been concentrated around English, lagging the rapid advancement of LLMs in multilingual settings. In this paper, we introduce a new multilingual parallel dataset SHADES to help address this issue, designed for examining culturally-specific stereotypes that may be learned by LLMs. The dataset includes stereotypes from 20 regions around the world and 16 languages, spanning multiple identity categories subject to discrimination worldwide. We demonstrate its utility in a series of exploratory evaluations for both “base” and “instruction-tuned” language models. Our results suggest that stereotypes are consistently reflected across models and languages, with some languages and models indicating much stronger stereotype biases than others.

2023

Large language models are trained on increasing quantities of unstructured text, the largest sources of which are scraped from the Web. These Web scrapes are mainly composed of heterogeneous collections of text from multiple domains with minimal documentation. While some work has been done to identify and remove toxic, biased, or sexual language, the topic of personal information (PI) in textual data used for training Natural Language Processing (NLP) models is relatively under-explored. In this work, we draw from definitions of PI across multiple countries to define the first PI taxonomy of its kind, categorized by type and risk level. We then conduct a case study on the Colossal Clean Crawled Corpus (C4) and the Pile, to detect some of the highest-risk personal information, such as email addresses and credit card numbers, and examine the differences between automatic and regular expression-based approaches for their detection. We identify shortcomings in modern approaches for PI detection, and propose a reframing of the problem that is informed by global perspectives and the goals in personal information detection.

2022

Evaluating bias, fairness, and social impact in monolingual language models is a difficult task. This challenge is further compounded when language modeling occurs in a multilingual context. Considering the implication of evaluation biases for large multilingual language models, we situate the discussion of bias evaluation within a wider context of social scientific research with computational work. We highlight three dimensions of developing multilingual bias evaluation frameworks: (1) increasing transparency through documentation, (2) expanding targets of bias beyond gender, and (3) addressing cultural differences that exist between languages. We further discuss the power dynamics and consequences of training large language models and recommend that researchers remain cognizant of the ramifications of developing such technologies.
With the advent of Transformers, large language models (LLMs) have saturated well-known NLP benchmarks and leaderboards with high aggregate performance. However, many times these models systematically fail on tail data or rare groups not obvious in aggregate evaluation. Identifying such problematic data groups is even more challenging when there are no explicit labels (e.g., ethnicity, gender, etc.) and further compounded for NLP datasets due to the lack of visual features to characterize failure modes (e.g., Asian males, animals indoors, waterbirds on land etc.). This paper introduces an interactive Systematic Error Analysis and Labeling (SEAL) tool that uses a two-step approach to first identify high-error slices of data and then, in the second step, introduce methods to give human-understandable semantics to those underperforming slices. We explore a variety of methods for coming up with coherent semantics for the error groups using language models for semantic labeling and a text-to-image model for generating visual features.SEAL is available at https://huggingface.co/spaces/nazneen/seal.

2021

Large language models have led to remarkable progress on many NLP tasks, and researchers are turning to ever-larger text corpora to train them. Some of the largest corpora available are made by scraping significant portions of the internet, and are frequently introduced with only minimal documentation. In this work we provide some of the first documentation for the Colossal Clean Crawled Corpus (C4; Raffel et al., 2020), a dataset created by applying a set of filters to a single snapshot of Common Crawl. We begin by investigating where the data came from, and find a significant amount of text from unexpected sources like patents and US military websites. Then we explore the content of the text itself, and find machine-generated text (e.g., from machine translation systems) and evaluation examples from other benchmark NLP datasets. To understand the impact of the filters applied to create this dataset, we evaluate the text that was removed, and show that blocklist filtering disproportionately removes text from and about minority individuals. Finally, we conclude with some recommendations for how to created and document web-scale datasets from a scrape of the internet.

2019

Data-driven statistical Natural Language Processing (NLP) techniques leverage large amounts of language data to build models that can understand language. However, most language data reflect the public discourse at the time the data was produced, and hence NLP models are susceptible to learning incidental associations around named referents at a particular point in time, in addition to general linguistic meaning. An NLP system designed to model notions such as sentiment and toxicity should ideally produce scores that are independent of the identity of such entities mentioned in text and their social associations. For example, in a general purpose sentiment analysis system, a phrase such as I hate Katy Perry should be interpreted as having the same sentiment as I hate Taylor Swift. Based on this idea, we propose a generic evaluation framework, Perturbation Sensitivity Analysis, which detects unintended model biases related to named entities, and requires no new annotations or corpora. We demonstrate the utility of this analysis by employing it on two different NLP models — a sentiment model and a toxicity model — applied on online comments in English language from four different genres.

2018

2017

Language contains information about the author’s demographic attributes as well as their mental state, and has been successfully leveraged in NLP to predict either one alone. However, demographic attributes and mental states also interact with each other, and we are the first to demonstrate how to use them jointly to improve the prediction of mental health conditions across the board. We model the different conditions as tasks in a multitask learning (MTL) framework, and establish for the first time the potential of deep learning in the prediction of mental health from online user-generated text. The framework we propose significantly improves over all baselines and single-task models for predicting mental health conditions, with particularly significant gains for conditions with limited data. In addition, our best MTL model can predict the presence of conditions (neuroatypicality) more generally, further reducing the error of the strong feed-forward baseline.

2016

2015

2014

2013

2012

2011

2010

2009

2007

Search
Co-authors
Fix author