Manuel Torralbo


2025

Dialogue Systems (DS) are increasingly in demand for automating tasks through natural language interactions. However, the core techniques for user comprehension in DS depend heavily on large amounts of labeled data, limiting their applicability in data-scarce environments common to many companies. This paper identifies best practices for data-efficient development and cost-effective deployment of DS in real-world application scenarios. We evaluate whether fine-tuning a medium-sized Large Language Model (LLM) for joint Intent Classification (IC) and Slot Filling (SF), with moderate hardware resource requirements still affordable by SMEs, can achieve competitive performance using less data compared to current state-of-the-art models. Experiments on the Spanish and English portions of the MASSIVE corpus demonstrate that the Llama-3-8B-Instruct model fine-tuned with only 10% of the data outperforms the JointBERT architecture and GPT-4o in a zero-shot prompting setup in monolingual settings. In cross-lingual scenarios, Llama-3-8B-Instruct drastically outperforms multilingual JointBERT demonstrating a vastly superior performance when fine-tuned in a language and evaluated in the other.

2024

In today’s industrial landscape, seamless collaboration between humans and machines is essential and requires a shared knowledge of the operational domain. In this framework, the technical knowledge for operator assistance has traditionally been derived from static sources such as technical documents. However, experienced operators hold invaluable know-how that can significantly contribute to support other operators. This work focuses on enhancing the operator assistance tasks in the manufacturing industry by leveraging spoken natural language interaction. More specifically, a Human-in-the-Loop (HIL) incremental learning approach is proposed to integrate this expertise into a domain knowledge graph (KG) dynamically, along with the use of in-context learning for Large Language Models (LLMs) to benefit other capabilities of the system. Preliminary results of the experimentation carried out in an industrial scenario, where the graph size was increased in a 25%, demonstrate that the incremental enhancing of the KG benefits the dialogue system’s performance.