Manfred Klenner


2024

We investigate how gender authorship influences polar, i.e. positive and negative gender reference. Given German-language newspaper texts where the full name of the authors are known and their gender can be inferred from the first names. And given that nouns in the text have gender reference, i.e. are labeled by a gender classifier as female or male denoting nouns. If these nouns carry a polar load, they count towards the gender-specific statistics we are interested in. A polar load is given either via phrase-level sentiment composition, or by a verb-based analysis of the polar role a noun (phrase) plays: is it framed by the verb as a positive or negative actor, or as receiving a positive or negative effect? Also, reported gender-gender relations (in favor, against) might be gender-specific. Statistical hypothesis testing is carried out in order to find out whether significant gender-wise correlations exist. We found that, in fact, gender reference is gender-specific: each gender significantly more often focuses on their own gender than the other one and e.g. positive actorship supremacy is claimed (intra-) gender-wise.

2023

In this short paper, we combine the semantic perspective of particular verbs as casting a positive or negative relationship between their role fillers with a pragmatic examination of how the distribution of particular vulnerable role filler subtypes (children, migrants, etc.) looks like. We focus on the gender subtype and strive to extract gender-specific semantic role profiles: who are the predominant sources and targets of which polar events - men or women. Such profiles might reveal gender stereotypes or biases (of the media), but as well could be indicative of our social reality.

2022

In this paper, we introduce a gold standard for animacy detection comprising almost 14,500 German nouns that might be used to denote either animate entities or non-animate entities. We present inter-annotator agreement of our crowd-sourced seed annotations (9,000 nouns) and discuss the results of machine learning models applied to this data.
In this paper, we discuss work that strives to measure the degree of negativity - the negative polar load - of noun phrases, especially those denoting actors. Since no gold standard data is available for German for this quantification task, we generated a silver standard and used it to fine-tune a BERT-based intensity regressor. We evaluated the quality of the silver standard empirically and found that our lexicon-based quantification metric showed a strong correlation with human annotators.

2021

In this paper, we introduce the first corpus specifying negative entities within sentences. We discuss indicators for their presence, namely particular verbs, but also the linguistic conditions when their prediction should be suppressed. We further show that a fine-tuned Bert-based baseline model outperforms an over-generating rule-based approach which is not aware of these further restrictions. If a perfect filter were applied, both would be on par.

2017

We argue that in order to detect stance, not only the explicit attitudes of the stance holder towards the targets are crucial. It is the whole narrative the writer drafts that counts, including the way he hypostasizes the discourse referents: as benefactors or villains, as victims or beneficiaries. We exemplify the ability of our system to identify targets and detect the writer’s stance towards them on the basis of about 100 000 Facebook posts of a German right-wing party. A reader and writer model on top of our verb-based attitude extraction directly reveal stance conflicts.

2016

In this paper, a German verb resource for verb-centered sentiment inference is introduced and evaluated. Our model specifies verb polarity frames that capture the polarity effects on the fillers of the verb’s arguments given a sentence with that verb frame. Verb signatures and selectional restrictions are also part of the model. An algorithm to apply the verb resource to treebank sentences and the results of our first evaluation are discussed.

2015

2014

2013

2012

In this paper, we describe MLSA, a publicly available multi-layered reference corpus for German-language sentiment analysis. The construction of the corpus is based on the manual annotation of 270 German-language sentences considering three different layers of granularity. The sentence-layer annotation, as the most coarse-grained annotation, focuses on aspects of objectivity, subjectivity and the overall polarity of the respective sentences. Layer 2 is concerned with polarity on the word- and phrase-level, annotating both subjective and factual language. The annotations on Layer 3 focus on the expression-level, denoting frames of private states such as objective and direct speech events. These three layers and their respective annotations are intended to be fully independent of each other. At the same time, exploring for and discovering interactions that may exist between different layers should also be possible. The reliability of the respective annotations was assessed using the average pairwise agreement and Fleiss' multi-rater measures. We believe that MLSA is a beneficial resource for sentiment analysis research, algorithms and applications that focus on the German language.

2011

2010

In the past, we have succesfully used machine learning approaches for sentiment analysis. In the course of those experiments, we observed that our machine learning method, although able to cope well with figurative language could not always reach a certain decision about the polarity orientation of sentences, yielding erroneous evaluations. We support the conjecture that these cases bearing mild figurativeness could be better handled by a rule-based system. These two systems, acting complementarily, could bridge the gap between machine learning and rule-based approaches. Experimental results using the corpus of the Affective Text Task of SemEval ’07, provide evidence in favor of this direction.

2009

Nous proposons un modèle filtrant de résolution de coréférences basé sur les notions de transitivité et d’exclusivité linguistique. À partir de l’hypothèse générale que les chaînes de coréférence demeurent cohérentes tout au long d’un texte, notre modèle assure le respect de certaines contraintes linguistiques (via des filtres) quant à la coréférence, ce qui améliore la résolution globale. Le filtrage a lieu à différentes étapes de l’approche standard (c-à-d. par apprentissage automatique), y compris avant l’apprentissage et avant la classification, accélérant et améliorant ce processus.
Nous présentons ici PolArt, un outil multilingue pour l’analyse de sentiments qui aborde la composition des sentiments en appliquant des transducteurs en cascade. La compositionnalité est assurée au moyen de polarités préalables extraites d’un lexique et des règles de composition appliquées de manière incrémentielle.

2007

2006

2004