Mahmoud Reda


2025

2024

Arabic diacritic recovery i.e. diacritization is necessary for proper vocalization and an enabler for downstream applications such as language learning and text to speech. Diacritics come in two varieties, namely: core-word diacritics and case endings. In this paper we introduce a highly effective morphologically informed character-level model that can recover both types of diacritics simultaneously. The model uses a Recurrent Neural Network (RNN) based architecture that takes in text as a sequence of characters, with markers for morphological segmentation, and outputs a sequence of diacritics. We also introduce a character-based morphological segmentation model that we train for Modern Standard Arabic (MSA) and dialectal Arabic. We demonstrate the efficacy of our diacritization model on Classical Arabic, MSA, and two dialectal (Moroccan and Tunisian) texts. We achieve the lowest reported word-level diacritization error rate for MSA (3.4%), match the best results for Classical Arabic (5.4%), and report competitive results for dialectal Arabic.