Liteng Mi


2025

Zero-shot event-relational reasoning is an important task in natural language processing, and existing methods jointly learn a variety of event-relational prefixes and inference-form prefixes to achieve such tasks. However, training prefixes consumes large computational resources and lacks interpretability. Additionally, learning various relational and inferential knowledge inefficiently exploits the connections between tasks. Therefore, we first propose a method for Reasoning-Oriented Locating and Editing (ROLE), which locates and edits the key modules of the language model for reasoning about event relations, enhancing interpretability and also resource-efficiently optimizing the reasoning ability. Subsequently, we propose a method for Analogy-Based Locating and Editing (ABLE), which efficiently exploits the similarities and differences between tasks to optimize the zero-shot reasoning capability. Experimental results show that ROLE improves interpretability and reasoning performance with reduced computational cost. ABLE achieves SOTA results in zero-shot reasoning.

2024

“Biomedical Event Causal Relation Extraction (BECRE) is an important task in biomedical infor-mation extraction. Existing methods usually use pre-trained language models to learn semanticrepresentations and then predict the event causal relation. However, these methods struggle tocapture sufficient cues in biomedical texts for predicting causal relations. In this paper, we pro-pose a Path Reasoning-based Relation-aware Network (PRRN) to explore deeper cues for causalrelations using reinforcement learning. Specifically, our model reasons the relation paths betweenentity arguments of two events, namely entity relation path, which connects the two biomedicalevents through the multi-hop interactions between entities to provide richer cues for predictingevent causal relations. In PRRN, we design a path reasoning module based on reinforcementlearning and propose a novel reward function to encourage the model to focus on the length andcontextual relevance of entity relation paths. The experimental results on two datasets suggestthat PRRN brings considerable improvements over the state-of-the-art models.Introduction”