Lei Zou


2023

Attribute extraction aims to identify attribute names and the corresponding values from descriptive texts, which is the foundation for extensive downstream applications such as knowledge graph construction, search engines, and e-Commerce. In previous studies, attribute extraction is generally treated as a classification problem for predicting attribute types or a sequence tagging problem for labeling attribute values, where two paradigms, i.e., closed-world and open-world assumption, are involved. However, both of these paradigms have limitations in terms of real-world applications. And prior studies attempting to integrate these paradigms through ensemble, pipeline, and co-training models, still face challenges like cascading errors, high computational overhead, and difficulty in training. To address these existing problems, this paper presents Attribute Tree, a unified formulation for real-world attribute extraction application, where closed-world, open-world, and semi-open attribute extraction tasks are modeled uniformly. Then a text-to-tree generation model, AtTGen, is proposed to learn annotations from different scenarios efficiently and consistently. Experiments demonstrate that our proposed paradigm well covers various scenarios for real-world applications, and the model achieves state-of-the-art, outperforming existing methods by a large margin on three datasets. Our code, pretrained model, and datasets are available at https://github.com/lsvih/AtTGen.
Document-level relation extraction (DocRE) aims to extract relations among entities within a document, which is crucial for applications like knowledge graph construction. Existing methods usually assume that entities and their mentions are identified beforehand, which falls short of real-world applications. To overcome this limitation, we propose TaG, a novel table-to-graph generation model for joint extractionof entities and relations at document-level. To enhance the learning of task dependencies, TaG induces a latent graph among mentions, with different types of edges indicating different task information, which is further broadcast with a relational graph convolutional network. To alleviate the error propagation problem, we adapt the hierarchical agglomerative clustering algorithm to back-propagate task information at decoding stage. Experiments on the benchmark dataset, DocRED, demonstrate that TaG surpasses previous methods by a large margin and achieves state-of-the-art results.
Prevalent supervised learning methods in natural language processing (NLP) are notoriously data-hungry, which demand large amounts of high-quality annotated data. In practice, acquiring such data is a costly endeavor. Recently, the superior few-shot performance of large language models (LLMs) has propelled the development of dataset generation, where the training data are solely synthesized from LLMs. However, such an approach usually suffers from low-quality issues, and requires orders of magnitude more labeled data to achieve satisfactory performance. To fully exploit the potential of LLMs and make use of massive unlabeled data, we propose LLMaAA, which takes LLMs as annotators and puts them into an active learning loop to determine what to annotate efficiently. To learn robustly with pseudo labels, we optimize both the annotation and training processes: (1) we draw k-NN examples from a small demonstration pool as in-context examples, and (2) we adopt the example reweighting technique to assign training samples with learnable weights. Compared with previous approaches, LLMaAA features both efficiency and reliability. We conduct experiments and analysis on two classic NLP tasks, named entity recognition and relation extraction. With LLMaAA, task-specific models trained from LLM-generated labels can outperform the teacher within only hundreds of annotated examples, which is much more cost-effective than other baselines.

2022

Semantic parsing solves knowledge base (KB) question answering (KBQA) by composing a KB query, which generally involves node extraction (NE) and graph composition (GC) to detect and connect related nodes in a query. Despite the strong causal effects between NE and GC, previous works fail to directly model such causalities in their pipeline, hindering the learning of subtask correlations. Also, the sequence-generation process for GC in previous works induces ambiguity and exposure bias, which further harms accuracy. In this work, we formalize semantic parsing into two stages. In the first stage (graph structure generation), we propose a causal-enhanced table-filler to overcome the issues in sequence-modelling and to learn the internal causalities. In the second stage (relation extraction), an efficient beam-search algorithm is presented to scale complex queries on large-scale KBs. Experiments on LC-QuAD 1.0 indicate that our method surpasses previous state-of-the-arts by a large margin (17%) while remaining time and space efficiency.

2021

We present NAMER, an open-domain Chinese knowledge base question answering system based on a novel node-based framework that better grasps the structural mapping between questions and KB queries by aligning the nodes in a query with their corresponding mentions in question. Equipped with techniques including data augmentation and multitasking, we show that the proposed framework outperforms the previous SoTA on CCKS CKBQA dataset. Moreover, we develop a novel data annotation strategy that facilitates the node-to-mention alignment, a dataset (https://github.com/ridiculouz/CKBQA) with such strategy is also published to promote further research. An online demo of NAMER (http://kbqademo.gstore.cn) is provided to visualize our framework and supply extra information for users, a video illustration (https://youtu.be/yetnVye_hg4) of NAMER is also available.

2018

Although natural language question answering over knowledge graphs have been studied in the literature, existing methods have some limitations in answering complex questions. To address that, in this paper, we propose a State Transition-based approach to translate a complex natural language question N to a semantic query graph (SQG), which is used to match the underlying knowledge graph to find the answers to question N. In order to generate SQG, we propose four primitive operations (expand, fold, connect and merge) and a learning-based state transition approach. Extensive experiments on several benchmarks (such as QALD, WebQuestions and ComplexQuestions) with two knowledge bases (DBpedia and Freebase) confirm the superiority of our approach compared with state-of-the-arts.

2012