Lee Schwartz


2010

2007

2004

2003

Prepositional phrase attachment (PP attachment) is a major source of ambiguity in English. It poses a substantial challenge to Machine Translation (MT) between English and languages that are not characterized by PP attachment ambiguity. In this paper we present an unsupervised, bilingual, corpus-based approach to the resolution of English PP attachment ambiguity. As data we use aligned linguistic representations of the English and Japanese sentences from a large parallel corpus of technical texts. The premise of our approach is that with large aligned, parsed, bilingual (or multilingual) corpora, languages can learn non-trivial linguistic information from one another with high accuracy. We contend that our approach can be extended to linguistic phenomena other than PP attachment.

2002

2001

This paper presents an overview of the broad-coverage, application-independent natural language generation component of the NLP system being developed at Microsoft Research. It demonstrates how this component functions within a multilingual Machine Translation system (MSR-MT), using the languages that we are currently working on (English, Spanish, Japanese, and Chinese). Section 1 provides a system description of MSR-MT. Section 2 focuses on the generation component and its set of core rules. Section 3 describes an additional layer of generation rules with examples that address issues specific to MT. Section 4 presents evaluation results in the context of MSR-MT. Section 5 addresses generation issues outside of MT.